Identification of Fatigue Cracks on the Basis of Measurable Changes in System Dynamics

Open access

Abstract

In order to obtain correct experimental results, fatigue strength tests carried out on the basis of a measurement setup using dynamic excitation generated by inertial force require test completion criterion to be specified. The paper presents the method applied to identify damage on the basis of an analysis of changes in registered acceleration amplitudes based on experimental studies, and an analysis of image of obtained fatigue fractures.

[1] S. Gupta, A. Ray, E. Keller. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 2007 (21), No. 2, 866 – 884.

[2] Y. Furuya. Small internal fatigue crack growth rate measured by beach marks. Mater. Sci. Eng. A 2016 (678), 260 – 266.

[3] M. E. Biancolini, C. Brutti, G. Paparo, A. Zanini. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int. J. Fatigue 2006 (28), No. 12, 1820 – 1825.

[4] M. Kurek, T. Lagoda, D. Katzy. Comparison of Fatigue Characteristics of some Selected Materials. Mater. Test. 2014 (56), No. 2, 92 – 95.

[5] Ličková, D. et al. Identification of Fatigue Constants by Means of 3D Method. Journal of Mechanical Engineering – Strojnícky časopis 2016 (66), No. 2, 107–116.

[6] J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, and Q. Zhang. A hybrid frequency–time domain method for predicting multiaxial fatigue life of 7075-T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct. 2014 (38), 247 – 256.

[7] A. Nieslony, E. Macha. Spectral Method in Multiaxial Random Fatigue. Springer, 2007.

[8] Karolczuk, E. Macha. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract. 2005 (134), No. 3–4, 267 – 304.

[9] K. Walat, M. Kurek, P. Ogonowski, T. Łagoda. The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range. Int. J. Fatigue 2012 (37), 100–111.

[10] K. Kluger, T. Łagoda. Fatigue life of metallic material estimated according to selected models and load conditions. J. Theor. Appl. Mech. 2013 (51), No. 3, 581 – 592.

[11] K. Kluger. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue 2015 (80), 22 – 29.

[12] R. Owsinski, et al. Evaluation of fatigue life of steel using steel grain size. Materialwiss. Werkstofftech. 2015 (46), No. 10, 1059 – 1067.

[13] Niesłony, A. et al. Durability Tests Acceleration Performed on Machine Components Using Electromagnetic Shakers. In: Dynamical Systems: Theoretical and Experimental Analysis. Springer, Cham 2016, 293 – 305.

[14] R. Owsiński, A. Niesłony. Analytical Model of Dynamic Behaviour of Fatigue Test Stand – Description and Experimental Validation. In: Dynamical Systems: Modelling 2015, 293 – 317.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 263 20
PDF Downloads 111 110 12