Process Parameters Optimization for Producing AA6061/TiB2 Composites by Friction Stir Processing

Open access

Abstract

Friction stir processing (FSP) is solid state novel technique developed to refine microstructure and to improve the mechanical properties and be used to fabricate the aluminium alloy matrix composites. An attempt is made to fabricate AA6061/TiB2 aluminium alloy composite (AMCs) and the influence of process parameters like rotational speed, transverse feed, axial load and percentage reinforcement on microstructure and mechanical properties were studied. The microstructural observations are carried out and revealed that the reinforcement particles (TiB2) were uniformly dispersed in the nugget zone. The Tensile strength and Hardness of composites were evaluated. It was observed that tensile strength, and hardness were increased with increased the rotational speed and percentage reinforcement of particles. The process parameters were optimized using Taguchi analysis (Single Variable) and Grey analysis (Multi Variable). The most influential parameter was rotational speed in single variable method and multi variable optimization method. The ANOVA also done to know the percentage contribution of each parameter.

[1] H. Bakes, D. Benjamin, C.W. Kirkpatrick. Metals handbook, vol. 2. OH: ASM. Metals Park, 1979, 3 - 23.

[2] E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Fabrication and Evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix Nano composites. Materials and Design, 2011 (32), No. 6, 3263 - 3271.

[3] M. Salehi, H. Farnoush, J. Aghazadeh Mohandesi. Fabrication and characterization of functionally graded Al-SiC nano composite by using a novel multistep friction stir processing. Materials and Design, 2014 (63), 419 - 426.

[4] S.K. Chaudhury, S.C. Panigrahi. Role of processing parameters on microstructural evolution of spray formed Al-2Mg alloy and Al-2Mg-TiO2 composite. Journal of Material Processing Technology, 2007 (182), 343 - 351.

[5] F. Akhlaghi, A. Zare-Bidaki. Influence of graphite content on the dry sliding and oil impregnated sliding wear behaviour of Al 2024-graphite composites produced by in situ powder metallurgy method, Journal of Wear, 2009 (266), No. 1-2,2009, 37- 45.

[6] A. Baradeswaran, A. Elaya Perumal. Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites”, Composites B, 2013 (54), 146 -152.

[7] A. Kumar, S. Lal, S. Kumar. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Material Research Technology, 2013 (2), No. 3, 250 - 254.

[8] P. Sharma, S. Sharma, D. Khanduja. Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 2015 (3), 352-359.

[9] A. Kalkanli, S. Yilmaz. Synthesis and characterization of aluminium alloy 7075 reinforced with silicon carbide particulates, Materials and Design, 2008 (29), No. 4, 775 - 780.

[10] M. Zhao, G. Wu, Z. Dou, L. Jiang. TiB2P/Al composite fabricated by squeeze casting technology. Material Science. Engineering A. 2004 (374), No. 1 - 2, 303-306

[11] L. Ceschini, G. Minak, A. Morri. Tensile and fatigue properties of the AA6061/20 vol.% Al2O3p and AA7005/10 vol.% Al2O3p composites. Composites Science and Technology, 2006 (66), 333 - 342.

[12] K. B. Lee, J. P. Ahn, H. Know. Characteristics of AA6061/BN Composite Fabricated by Pressure Less Infiltration Technique. Metallurgical and materials transactions A, 2001 (32), 1007 - 1018.

[13] C. Bacciarini, V. Mathier. Aluminium AA6061 Matrix Composite Reinforced with Spherical Alumina Particles Produced by Infiltration: Perspective on Aerospace Applications”, Journal of Metallurgy, 2014, Article ID 248542, 10 pages.

[14] S.K. Ghosh, P. Saha. Crack and wear behaviour of Sic particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials Design, 2011 (32), 139 - 45.

[15] K. L. Tee, L. Lu, M. O. Lai. Wear performance of in situ Al- TiB2 composite”, Wear, 2000 (240), 59 -64.

[16] H. S. Arora, H. Singh, B. K. Dhindaw. Composite fabrication using friction stir processing - A review. International Journal of Advanced Manufacturing Technology, 2012 (61), No. 9 - 12, 1043 - 1055.

[17] Y. M. Youssef, R. J. Dashwood, P. D. Lee. Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs. Composites Part A: Applied Science and Manufacturing, 2005 (36), 747 - 769.

[18] L. T. Jiang, G. Q. Chen, X. D. He, M. Zhao, Z. Y. Xiu, R. J. Fan, G. H. Wu. Microstructure and tensile properties of TiB2p/6061 Al composites. Transactions of Nonferrous Metals Society of China, 2009 (19), Supplement 3, s542 - s546.

[19] V. Umasankar, M. Anthony Xavior, S. Karthikeyan. Experimental evaluation of the influence of processing parameters on the mechanical properties of Sic particle reinforced AA6061 aluminium alloy matrix composite by powder processing. Journal of Alloys and Compounds, 2014 (582), No. 9, 380 - 386.

[20] M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple Smith, C. J. Dawes, The Welding Institute, TWI, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, 1991.

[21] R.S. Mishra, Z.Y. Ma, I. Charit. Friction stir processing: A novel technique for fabrication of surface composite. Journal of material science and engineering, 2003 (341), No. 1 - 2, 307 - 310.

[22] R. Jančo, L. Écsi, P. Élesztős. Fsw numerical simulation of aluminium plates by sysweld - PART II. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 2, 29 - 36.

[23] R. Jančo, L. Écsi, P. Élesztős. Fsw numerical simulation of aluminium plates by sysweld - PART I. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 1, 47 - 52.

[24] W. Wang, Q. Shi, P. Liu, H. Li, T. Li. A novel way to produce bulk SiCp reinforced aluminium metal matrix composites by friction stir processing, Journal of Materials Processing Technology, 2009 (209), No. 4, 2099 - 2103.

[25] A. Handa, V. Chawla. Experimental evaluation of mechanical properties of friction welded dissimilar steels under varying axial pressures. Journal of mechanical engineering - Strojnícky časopis, 2016 (66), No. 1, 27 - 36.

[26] S. Soleymani, A. Abdllah - Zadesh, S.A. Alodkht. Micro structural and tribological properties of Al 583 based surface hybrid composite produced by friction stir processing. Wear, 2012 (278 - 279), 41-47.

[27] A. Dolatkhah, P. Golbabaei, M. K. Besharat, G, F. Molaikiya. Investigating effects of process parameters on micro structure and mechanical properties of Al 5052/Sic metal matrix composite fabricated via friction stir processing, Materials and Design, 2012 (37), 458 -464.

[28] J. Gandra, R. Miranda, P. Vilaca, A. Velhinho, J. P. Teixeira. Functionally graded materials produced by friction stir processing, Journal of Materials Processing Technology, 2011 (211), No. 11, 1659 - 1668.

[29] A. Kurt, et.al. Surface modification of aluminum alloys by friction stir processing, Journal of material processing technology, 2011 (211), 313 - 331.

[30] S. R. Anvari, F. Karimzadeh, M. H. Enayati. Wear characteristics of Al-Cr-O surface nano-composite layer fabricated on Al6061 plate by friction stir processing. Wear, 2013 (304), 144 - 151.

[31] M. Yang, X. Chengying, Ch. Wu, K. Lin , J. Ch. Yuh, L. Anal. Fabrication of AA6061 / Al2o3 nano ceramic particle reinforeced composite coating by using friction stir processing. Journal Material Science, 2010 (45), 4431 - 4438.

[32] A. Thangarasu, N. Murugan, I. Dinaharan, S. J. Vijay. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Archives of Civil and Mechanical Engineering, 2015 (15), No. 2, 324 -334.

[33] Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi. Fullerene/A5083 composites fabricated by material flow during friction stir processing”, Composites: Part A, 2007 (38), 2097 - 2101.

[34] D. C. Montgomery. Design and analysis of experiments [M]. IV Edition. NY: John- Wiley & Sons, Inc, 2006.

[35] P. J. Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. New York: NY: McGraw-Hill Professional; 2nd edition, 1995.

[36] E. R. I Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Science and Technology of Welding and Joining, 2009 (14), No. 5, 713 − 725.

[37] W. Wang, Q. Shi, P. Liu, H. Li, T. Li. A novel way to produce bulk SiCp reinforced aluminium metal matrix composites by friction stir processing. Journal of Materials Processing Technology, 2009 (209), No. 4, 2099 − 2103.

[38] M. Salehi, M. Saadatmand, J. Aghazadeh Mohandesi. Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Transactions Nonferrous Metals Society of China, 2012 (22), 1055 − 1063

[39] M. Barmouz, M. K. B. Givi, J. Seyfi. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, micro hardness, wear and tensile behaviour. Materials Characterization, 2011 (62), No. 1, 108 − 117.

[40] J. Deng. Introduction to grey system. J Grey Systems, 1989, 1 - 24.

[41] J. Kundu, H. Singh, Friction stir welding: multi-response optimization using Taguchibased GRA, Production & Manufacturing Research, 2016 (4), No. 1, 228 - 241.

[42] S. Vijayan, R. Raju, S. R. K Rao. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminium Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Materials and Manufacturing Processes, 2010 (25), No. 11, 1206 - 1212.

[43] S. Kasman. Multi response optimization using the Taguchi based grey relational analysis, a case study for dissimilar stir butt welding of AA6082 -T6 /AA5754-H111, The international journal of Advanced manufacturing technology, 2013 (68), 795 - 804.

[44] Ch.-H. Chien, W-B Lin, T. Chen. Optimal FSW process parameters for aluminum alloys AA5083. Journal of the Chinese Institute of Engineers, 2011 (34), No. 1, 99 - 105.

[45] S. Vijayan, R. Raju, S. R. K Rao. Multiobjective Optimization of Friction Stir Welding Process Parameters on Aluminium Alloy AA 5083 Using Taguchi-Based Grey Relation Analysis. Materials and Manufacturing Processes, 2010 (25), No. 11, 1206 - 1212.

[46] N. D. Ghetiya, K.M. Patel, A.J. Kavar. Multi-objective optimization of FSW process parameters of aluminum alloy using taguchi-based grey relational analysis. Transactions of the Indian Institute of Metals, 2016 (69), 917 - 923.

[47] M.M. El-Rayes, E.A. El-Danaf. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy6082. Journal of Material Processing Technology, 2012 (212), 1157 - 1168.

[48] A. Hamdollahzadeha, M. Bahrami, M. Farahmand Nikoo, A. Yusefi , M.K. Besharati Givib, N. Parvina. Microstructure evolutions and mechanical properties of nano-SiCfortified AA7075 friction stir weldment: The role of second pass processing. Journal of Manufacturing Processes, 2015 (20), No. 1, 367 - 373.

[49] M. Barmouz, P. Asadi, M. K. B. Givi, M. Taherishargh. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction”, Material Science and Engineering A, 2011 (528), No. 3, 1740 - 1751.

[50] D.K. Lim, T. Shibayanagi, P.A. Gerlich. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Materials Science and Engineering A., 2009 (507), No. 1 - 2, 194 − 199.

[51] L. Suvarna Raju, A. Kumar. Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Defence Technology, 2014 (10), 375 - 383.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 14
PDF Downloads 58 58 10