Research of Cavitation at High Shear Stress

Open access

Abstract

The article describes the theory of cavitation at high values of shear stress in a viscous liquid. For this purpose, a spatial model of two cylindrical shells imposed concentrically was designed. In the narrow gap between the cylinders the temperature, density and viscosity of liquid is constant. Shear stress is induced by the rotary motion of the inner cylinder, resulting in a change of velocity and pressure fields. Due to the pressure drop between the cylinders there is a precondition to the formation of cavitation bubbles at the point of the lowest static pressure. To verify the assumption was made CFD model based on simplified physical model, through which cavitation was qualitatively and quantitatively assessed. In this paper the results of the numerical solution will be presented alongside with basic form of experimental device for physical generation of cavitation at high values of shear stress.

[1] URUBA, V.: Turbulence, ČVUT in Praha, Faculty of Mechanical Engineering, 2009, No. 1., 130 pp., ISBN 978-80-01-04330-1, Czech republic

[2] OLŠIAK, R.: Experimentálne zariadenie na výskum prúdenia v kanáloch veľmi malých rozmerov, The application of experimental and numerical methods in fluid mechanics and energetics, Proceedings XVII. International scientific conference, Žilina 2010, pp. 238, ISBN 978-80-554-0189-8

[3] BRENNEN, E.B.: Cavitation and Buble Dynamics, ISBN 978-01-95-09409-1, s.282, Oxford University Press, Oxford 1995, United Kingdom

[4] Fluent Inc. Fluent 15 –Theory guide. [Online]. c2015, Acess from URL: http://148.204.81.206/Ansys/150/ANSYS%20Fluent%20Users%20Guide.pdf

[5] KOZUBKOVÁ, M.; RAUTOVÁ, J.; BOJKO, M.: Mathematical Model of Cavitation and Modelling of Fluid Flow in Cone, Conference “HERVICON-2011”, Ostrava Poruba 708 33, Czech republic 2011

[6] DJERIDI, H., GABILLET, C., BILLARD, J. Y.: Two-Phase Couette Taylor Flow: Arrangement of the Dispersed Phase and Effects on the Flow Structures, Research Institute of French Naval Academy, France 2004

[7] BRUJAN, E. A.: Cavitation in Non-Newtonian Fluids – With Biomedical and Bioengineering Applications, Springer Science 2011, ISBN 978-3-642-15342-6

[8] VLČEK, P.: Modelování turbulentního proudění, ČVUT in Praha, Faculty of Mechanical Engineering, 2013, Czech Republic, Access from URL: http://chps.fsid.cvut.cz/pt/2013/pdf/3509.pdf

[9] SHAH Y. T., PANDIT A. B., MOHOLKAR V. S.: Cavitation Reaction Engineering, Springer US 1999, Vyd.1., 352pp., New York USA, ISBN 978-1-4615-4787-7

[10] FRANC J.P., MICHEL J.M.: Fundamentals of Cavitation, Springer Science & Business Media, 2006, Vyd.1., 306 pp., Netherland, ISBN 978-1-4020-2233-3

[11] ATTIA, H. A., ABDEEN, M. A. M.: Unsteady generalized Couette flow with heat transfer considering the Hall effect, Journal of Mechanical Engineering, 62, 2011, pp. 5-6, ISSN: 0039-2472, Slovak republic

[12] GUILLERM R., DA SOGHE R., BIANCHINI C., PONCET S., VIAZZO S.: Numerical predictions of flow field in closed and opened Taylor-Couette cavities, 4th european conference for aerospace sciences (EUCASS 2011), Saint Petersburg 196084, Russia 2011, Acess from URL: https://www.academia.edu/1416115//Numerical_predictions_of_flow_field_in_closed_and_opened_Taylor-Couette_cavities

[13] DJERIDI H., GABILLET C., BILLARD J. Y.: Two-Phase Couette Taylor Flow: Arrangement of the Dispersed Phase and Effects on the Flow Structures, Research Institute of French Naval Academy, France 2004, Access from URL: https://hal.archives-ouvertes.fr/hal-01208349/document

[14] DIJKINK R. J.: Confined cavitation an experimental study, University of Twente, Netherland 2009, ISBN 978-90-365-2822-1

[15] DAVID ANDERECK C., HAYOT F.: Ordered and Turbulent Patterns in Taylor-Couette Flow, Nato Science Series B, Springer US, Vyd.1., 357pp., USA 1992, ISBN 978-1-4615-3438-9

[16] MĹKVIK M., OLŠIAK R., KNÍŽAT B.: Rozrušovanie pevných materiálov pomocou kavitácie, Slovak Technical University in Bratislava, Faculty of Mechanical Engineering, No.1., 99.pp., Slovak republic 2015, ISBN 978-80-227-4323-5

[17] GOGA V., HUČKO B.: Phenomenological Material Model of Foam Solids. In Journal of Mechanical Engineering - Strojnícky časopis, Vol. 65, No. 1, 2015, pp.5-20, ISSN 0039-2472

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 163 12
PDF Downloads 67 67 6