Analysis of Piezoelectric Semiconducting Solids by Meshless Method

Open access

Abstract

In this paper, a meshless local Petrov-Galerkin (MLPG) method is proposed to calculate mechanical and electrical responses of three-dimensional piezoelectric semiconductors under static load. The analyzed solid is discretized by a set of generally distributed nodal points distributed over 3D geometry. Local integral equations (LIEs) are derived from the weak form of governing equations over small local subdomains. The subdomains have a spherical shape with a nodal point located in its centre. A unit step function is used as the test functions in the local weak-form. The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs. The proposed MLPG method is verified by using the corresponding results obtained with the finite element method. Numerical examples are presented and discussed for various boundary conditions and loading scenarios to show the performance of the developed MLPG method for analysis piezoelectric semiconducting solids.

References

  • [1] SONG, G.-SETHI, V.-Li, H.N.: Engineering Structures, 28, 2006, p.1513.

  • [2] TIERSTEN, H. F.: Linear Piezoelectric Plate Vibrations, Plenum, New York, 1969.

  • [3] TIERSTEN, H. F.-SHAM, T. L.: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45, 1998, p. 1.

  • [4] DU, J.-JIN, X.-WANG, J.: In: 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE 2007. p. 749.

  • [5] WHITE, D. L.: Journal of Applied Physics, 33, 1962, p. 2547.

  • [6] GHOSH, S. K.: Indian Journal of Pure and Applied Physics, 44, 2006, p.183.

  • [7] BUYUKKOSE, S.-HERNANDEZ-MINGUEZ, A.- VRATZOV, B.- et al.: Nanotechnology, 25, 2014, p.135204.

  • [8] SLADEK, J.-SLADEK, V.-PAN, E.-WUNSCHE, M.: Engineering Fracture Mechanics, 126, 2014, p.27.

  • [9] BENJEDDOU, A.: Computers and Structures, 76, 2000, p. 347.

  • [10] LEE, J.S.: Engineering Analysis with Boundary Elements, 15, 1995, p. 321.

  • [11] DING, H.-LIANG, J.: Computers & Structures, 71, 1999, p. 447.

  • [12] ATLURI, S. N.: The Meshless Method (MLPG) For Domain & BIE Discretizations. Forsyth: Tech Science Press, 2004.

  • [13] SLADEK, J.-SLADEK, V.-ATLURI, S.N.: CMES: Computer Modeling in Engineering & Sciences, 6, 2004, p. 477.

  • [14] SLADEK, J.-SLADEK, V.-ZHANG, Ch.-GARCIA-SANCHEZ, F.-WUNSCHE, M.: CMC: Computers, Materials & Continua, 4, 2006, p. 109.

  • [15] SLADEK, J.-SLADEK, V.-ZHANG, Ch.-SOLEK, P.-STAREK, L.: CMES: Computer Modeling in Engineering & Sciences, 19, 2007, p. 247.

  • [16] SLADEK, J.-SLADEK, V.-STANAK, P.: Acta Mechanica Slovaca, 14, 2010, p. 16.

  • [17] SLADEK, J.-SLADEK, V.-STANAK, P.-PAN, E.: CMES - Computer Modeling in Engineering and Sciences, 64, 2010, p. 267.

  • [18] SLADEK, J.-SLADEK, V.-STANAK, P.-WEN, P. H.-ATLURI, S. N.: CMES - Computer Modeling in Engineering and Sciences, 85, 2012, p. 543.

  • [19] SLADEK, J.-SLADEK, V.-STANAK, P.-ZHANG, Ch.-WUNSCHE, M.: Engineering Structures, 47, 2013, p. 81.

  • [20] STANAK, P.-SLADEK, J.-SLADEK, V.-KRAHULEC, S.: Building Research Journal, 59, 2011, pp. 125.

  • [21] SLADEK, J.-SLADEK, V.-SOLEK, P.: CMES: Computer Modeling in Engineering & Sciences, 43, 2009, p. 223.

  • [22] STANAK, P.-TADEU, A.-SLADEK, J.-SLADEK,V.: Journal of Intelligent Material Systems and Structures, 2014, DOI: 10.1177/1045389X14549864 (In Press)

  • [23] DONG, L.- ALOTAIBI, A.- MOHIUDDINE, S.A.-ATLURI, S. N.:. CMES: Computer Modeling in Engineering and Sciences, 99, 2014, p.1.

  • [24] LANCASTER, P.-SALKAUSKAS, T.: Mathematics in Computation, 37, 1981, p. 141.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 27
PDF Downloads 7 7 6