Phenomenological Material Model of Foam Solids

Open access


In this contribution a new phenomenological model for pressure loaded foam materials is proposed. The presented relationship between compressive stresses and compressive strains is derived by using simple rheological models. The proposed model contains several parameters. The procedure of their identification and the influence of parameters on a curve shape are also explained. The accuracy of our model is tested and compared with other phenomenological models. These tests have been applied on aluminium and polyurethane foams.

[1] GIBSON, L.J. AND ASHBY, M.F.: The mechanics of three-dimensional cellular materials, Proc. R. Soc. Lond. A 382, pp. 43-59, 1982.

[2] ASHBY, M.F.: The Mechanical Properties of Cellular Solids, Metallurgical Transactions A, vol. 14A, pp. 1755-69, 1983

[3] GIBSON, L. J., GIBSON AND ASHBY, M. F.: Cellular Solids - Structure and Properties, 2nd ed., CambridgeUniversity Press, Cambridge, 1997

[4] PATEL, M.R., FINNIE, I.: The deformation and fracture of rigid cellular plastics under multiaxial stress, Lawrence Livermore National Laboratory, Livermore California, 1969

[5] CHRISTENSEN, R.M.: Mechanics of Low Density Materials, J. Mech. Phys. Solids, vol. 34, pp. 563-578, 1986

[6] WARREN, W.E., KRAYNIK, A.M.: Linear elastic properties of open-cell foams, Journal of Applied Mechanics. vol. 55, pp. 341-346, 1988

[7] GRENESTEDT, J.L.: Effective elastic behavior of some models for ‘perfect’ cellular solids, International Journal of Solids and Structures, vol. 36, pp. 1471-1501, 1999

[8] DESHPANDE, V.S., FLECK, N.A.: Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids, vol. 48, pp. 1253-1283, 2000

[9] EVANS, A.G., HUTCHINSON, J.W., FLECK, N.A., ASHBY, M.F., WADLEY, H.N.G.: The topological design of multifunctional cellular metals, Prog. Mater. Sci., vol. 46, pp. 309-327, 2001

[10] LAROUSSI, M., SAB, K., ALAOUI, A.: Foam mechanics non-linear response of an elastic 3dperiodic microstructure, Int. J. Solids Struct., vol. 39, pp. 3599-3623, 2002

[11] RUSCH, K. C.: J. Appl. Polym. Sct., vol. 13, pp. 2297, 1969

[12] MEINECKE, E. A., SCHWABER, D. M.: J. Appl. Polym. Sct., vol. 14, pp. 2239, 1970

[13] NAGY, A., KO, W. L., LINDHOLM, U. S.: J. Cell. Plastics, vol. 10, pp. 127, 1974

[14] SHERWOOD, J. A., FROST, C. C.: Polym. Eng.Sct., vol. 32, pp. 1138, 1992

[15] AVALLE, M., BELINGARDI, G., IBBA, A.: Mechanical models of cellular solids: Parameters identification from experimental tests, Int. Journal of Impact Engineering, vol. 34, pp. 3-27, 2007

[16] LIU, Q., SUBHASH, G.: A Phenomenological Constitutive Model for Foams Under Large Deformations, Polymer Engineering and Science, vol. 44, pp. 463-473, 2004

[17] FARUQUE, O., LIU, N., CHOU, C. C.: SAE Paper No. 971076, 1997

[18] HUČKO, B., FARIA, L.: Material model of metallic cellular solids, Computer and Structures, vol. 62, pp. 1049-1057, 1997

[19] ZHANG, J., KIKUCHI, N., LI, V., YEE, A., NUSCHOLTZ, G.: International Journal of Impact Engineering, vol. 21, pp. 369, 1998

[20] GOGA, V.: Modeling the mechanical properties of foam materials, PhD thesis, Bratislava, 2009

[21] Curve Fitting Toolbox User’s Guide, The MathWorks, 2002

[22]Sanchez-Palencia, E: "Non-homogeneous media and vibration theory, Springer Verlag, 1980

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 219 23
PDF Downloads 117 117 12