Modeling Conditional Volatility of Indian Banking Sector’s Stock Market Returns

Open access

Abstract

The study attempts to capture conditional variance of Indian banking sector’s stock market returns across the years 2005 to 2015 by employing different GARCH based symmetric and asymmetric models. The results report existence of persistency as well as leverage effects in the banking sector return volatility. On an expected note, the global financial crisis increased conditional volatility in the Indian banking sector during the years 2007 to 2009; further evidenced from Markov regime switches. The exponential GARCH (EGARCH) model is found to be the best fit model capturing time-varying variance in the banking sector. The results support strong implications for the market participants at the time of devising portfolio management strategies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmed M. and Aal A. E. 2011. Modeling and Forecasting Time Varying Stock Return Volatility in the Egyptian Stock Market. International Research Journal of Finance and Economics 78 96-113.

  • Banumathy K. and Azhagaiah R. 2015. Modeling Stock Market Volatility: Evidence from India. Managing Global Transitions 13(1) 27-42.

  • Birau R. Trivedi J. and Antonescu M. 2015. Modeling S&P Bombay Stock Exchange BANKEX Index Volatility Patterns Using GARCH Model. Procedia Economics and Finance 32 520-525. doi: http://dx.doi.org/10.1016/S2212-5671(15)01427-6

  • Black F. 1976. Studies in stock price volatility changes. Paper presented at the 1976 Meetings of the American Statistical Association.

  • Bollerslev T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3) 307-327. doi: http://dx.doi.org/10.1016/0304-4076(86)90063-1

  • Chou R. Y. 1988. Volatility Persistence and Stock Valuations: Some Empirical Evidence Using garch. Journal of Applied Econometrics 3(4) 279-294. doi: http://dx.doi.org/10.1002/jae.3950030404

  • Christie A. A. 1982. The stochastic behavior of common stock variances: Value leverage and interest rate effects. Journal of Financial Economics 10(4) 407-432. doi: http://dx.doi.org/10.1016/0304-405X(82)90018-6

  • Esman Nyamongo M. and Misati R. 2010. Modeling the time-varying volatility of equities returns in Kenya. African Journal of Economic and Management Studies 1(2) 183-196. doi: http://dx.doi.org/10.1108/20400701011073482

  • Floros C. 2008. Modeling Volatility Using garch Models: Evidence from Egypt and Israel. Middle Eastern Finance and Economics 2 31-41.

  • French K. R. Schwert G. S. and Stambaugh R. F. 1987. Expected Stock Returns and Volatility. Journal of Financial Economics 19(1) 3-29. doi: http://dx.doi.org/10.1016/0304-405X(87)90026-2

  • Garcia R. 1992. Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models. University of Montreal Department of Economics Canada.

  • Glosten L. R. Jagannathan R. and Runkle D. E. 1993. On the relation between expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48(5) 1779-1801. doi: http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x

  • Goudarzi H. and Ramanarayanan C. S. 2010. ‘Modeling and Estimation of Volatility in Indian Stock Market. International Journal of Business and Management 5(2) 85-98. doi: http://dx.doi.org/10.5539/ijbm.v5n2p85

  • Hamilton J. D. 1989. A New Approach to the Economic Analysis of Nonstationary Time-Series and Business Cycle. Econometrica 57(2) 357-384. doi: http://dx.doi.org/10.2307/1912559

  • Karmarkar M. 2007. Asymmetric Volatility and Risk-Return Relationship in the Indian Stock Market. South Asia Economic Journal 8(1) 99-116. doi: http://dx.doi.org/10.1177/139156140600800106

  • Kaur H. 2004. Time varying volatility in the Indian Stock Market. Vikalpa 29(4) 25-42. doi: http://dx.doi.org/10.1177/0256090920040403

  • Kenneth A. T. 2013. Relationship between Volatility and Expected Returns in Two Emerging Markets. Business and Economics Journal 84 1-7.

  • Lakshmi S. 2013. Volatility Patterns in Various Sectoral Indices in Indian Stock Market. Global Journal of Management and Business Studies 3(8) 879-886.

  • Mallikarjuna M. and Prabhakara R. R. 2017. Volatility Behaviour in selected Sectoral Indices of Indian Stock Markets. Asian Journal of Research in Banking and Finance 7(2) 23-34. doi: http://dx.doi.org/10.5958/2249-7323.2017.00005.0

  • Mittal A. K. Arora D. D. and Goyal N. 2012. ‘Modeling the Volatility of Indian Stock Market. GITAM Journal of Management 10(1) 224-243.

  • Nelson D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59(2) 347-370. doi: http://dx.doi.org/10.2307/2938260

  • Schaller H. and Norden S. 1997. Regime Switching in Stock Market Returns. Applied Financial Economics 7(2) 177-191. doi: http://dx.doi.org/10.1080/096031097333745

  • Singh S. and Makkar A. 2014. Relationship between Crisis and Stock Volatility: Evidence from Indian Banking Sector. IUP Journal of Applied Finance 20(2) 75-83.

  • Tripathy T. and Gil-Alana L. A. 2015. Modeling time-varying volatility in the Indian stock returns: Some empirical evidence. Review of Development Finance 5(2) 91-97. doi: http://dx.doi.org/10.1016/j.rdf.2015.04.002

  • Wei W. 2002. Forecasting stock market volatility with non-linear GARCH models: A case for China. Applied Economics Letters 9(3) 163-166. doi: http://dx.doi.org/10.1080/13504850110053266

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 250 149 3
PDF Downloads 143 94 3