Chromium in Anthropogenically Polluted and Naturally Enriched Soils: A Review

Open access


Chromium (Cr) is a very important element examined for last decades on many expert fields. Its toxicity, mobility and bio-availability are strongly dependent on its oxidation state, Cr(III) and Cr(VI). Hexavalent form Cr(VI) is a known carcinogen with many harmful effects on living organisms, on the other hand trivalent Cr(III) form is an important micronutrient necessary for lipid metabolism. Contamination of the environment by Cr may come from anthropogenic industrial pollution or from naturally enriched sites, especially ultramafic rocks and their derived soils. Environmental conditions of soils and water represent a very complex system, which makes reliable assessment of its fate and potential toxicity and transport a really difficult task. A number of studies have been performed to describe Cr behaviour in these systems, as well as to optimize its determination, especially speciation methods. The main objective of this contribution is to summarize and present the today’s knowledge about the occurrence, speciation, and behaviour of Cr in soil environment, with a specific emphasis to description of differences between naturally enriched and anthropogenically contaminated soils.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aggrawal M Rohrer J (2016): Determination of hexavalent chromium Cr(VI) in drinking water by suppressed conductivity detection (Application Note 1116). Thermo Fisher Scientific Sunnyvale. Accessed 25 June 2017.

  • Allue J Garces AM Bech J Barcelo J Poschenrieder C (2014): Fractionation of chromium in tannery sludge-amended soil and its availability to fenugreek plants. Journal of Soils and Sediments 14 697–702. doi: 10.1007/s11368-013-0776-1.

  • Balarama Krishna MV Chandrasekaran K Rao SV Karunasagar D Arunachalam J (2005): Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS. Talanta 65 135–143. doi: 10.1016/j.talanta.2004.05.051.

  • Banks MK Schwab AP Henderson C (2006): Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62 255–264. doi: 10.1016/j.chemosphere.2005.05.020.

  • Barceloux DG Barceloux D (1999): Chromium. Journal of Toxicology: Clinical Toxicology 37 173–194. doi: 10.1081/CLT-100102418.

  • Barrera-Diaz CE Lugo-Lugo V Bilyeu B (2012): A review of chemical electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials 223–224 1–12. doi: 10.1016/j.jhazmat.2012.04.054.

  • Bartlett RJ (1991): Chromium cycling in soils and water: links gaps and methods. Environmental Health Perspectives 92 17–24.

  • Bartlett R James B (1979): Behavior of chromium in soils: III. Oxidation. Journal of Environment Quality 8 31. doi: 10.2134/jeq1979.00472425000800010008x.

  • Bas B (2006): Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry. Analytica Chimica Acta 570 195–201. doi: 10.1016/j.aca.2006.04.013.

  • Basumallick LRohrer J (2016). Sensitive determination of hexavalent chromium in drinking water (application update 179). Thermo Fisher Scientific Sunnyvale. doi: AU70415-EN.

  • Baumeister JL Hausrath EM Olsen AA Tschauner O Adcock CT Metcalf RV (2015): Biogeochemical weathering of serpentinites: an examination of incipient dissolution affecting serpentine soil formation. Applied Geochemistry 54 74–84. doi: 10.1016/j.apgeochem.2015.01.002.

  • Becquer T Quantin C Sicot M Boudot JP (2003): Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment 301 251–261. doi: 10.1016/S0048-9697(02)00298-X.

  • Bednar AJ Kirgan RA Jones WT (2009): Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC–ICP–MS. Analytica Chimica Acta 632 27–34. doi: 10.1016/j.aca.2008.10.050.

  • Bertolo R Bourotte C Hirata R Marcolan L Sracek O (2011): Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin São Paulo State Brazil. Applied Geochemistry 26 1353–1363. doi: 10.1016/j.apgeochem.2011.05.009.

  • Bilbao SS Garcia FN Roldan FV (2008): Serpentine as a natural nickel scavenger in weathering profiles of the Aguablanca Ni-Cu-(PGE) deposit (Spain). A SEM and HRTEM study. Macla 10 142–144.

  • Bobrowski A Ba B Dominik J Niewiara E Szaliska E Vignati D Zar Ebski J (2004): Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta 63 1003–1012. doi: 10.1016/j.talanta.2004.01.004.

  • Borges SS Korn M Lima JLFC (2002): Chromium(III) determination with 15-diphenylcarbazide based on the oxidative effect of chlorine radicals generated from CCl4 sonolysis in aqueous solution. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 18 1361–1366.

  • Catalani S Fostinelli J Gilberti ME Apostoli P (2015): Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water. International Journal of Mass Spectrometry 387 31–37. doi: 10.1016/j.ijms.2015.06.015.

  • CEPA (2017): Chromium-6 Drinking Water MCL. Accessed 10 August 2017.

  • Chang YT Hseu ZY Iizuka Y Yu CD (2013): Morphology geochemistry and mineralogy of serpentine soils under a tropical forest in Southeastern Taiwan. Taiwan Journal of Forest Science 28 185–201.

  • Charlet L Manceau A (1992): X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. Journal of Colloid and Interface Science 148 (2) 443-458.

  • Chen Y Chen J Xi Z Yang G Wu Z Li J Fu F (2015): Simultaneous analysis of Cr(III) Cr(VI) and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 36 1208–1215. doi: 10.1002/elps.201500015.

  • Cheung KH Gu JD (2007): Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration and Biodegradation 59 8–15. doi: 10.1016/j.ibiod.2006.05.002.

  • Choppala GK Bolan NS Megharaj M Chen Z Naidu R (2012): The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environment Quality 41 1175–1184. doi: 10.2134/jeq2011.0145.

  • Choppala G Bolan N Park JH (2013a): Chromium contamination and its risk management in complex environmental settings. Advances in Agronomy 120 129–172. doi: 10.1016/B978-0-12-407686-0.00002-6.

  • Choppala G Bolan N Seshadri B (2013b): Chemodynamics of chromium reduction in soils: implications to bioavailability. Journal of Hazardous Materials 261 718–724. doi: 10.1016/j.jhazmat.2013.03.040.

  • Choppala G Bolan N Kunhikrishnan A Skinner W Seshadri B (2015): Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environmental Science and Pollution Research 12 8969–8978. doi: 10.1007/s11356-013-1653-6.

  • Coelho P (2016): Analysis of trace elements in polymer samples to ensure compliance with WEEE-RoHS international standards using the Thermo Scientific iCAP 7200 ICP-OES (Application Note 43145). Thermo Fisher Scientific Cam-bridge. doi: AN43145-EN0416C.

  • Cornelis R Caruso J Crews H Heumann K (eds) (2005): Handbook of elemental speciation II – species in the environment food medicine and occupational health. Wiley Chichester 120–157. doi: 10.1002/0470856009.

  • Council Directive 98/83/EC (1998): Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities L330 32–54.

  • Dhal B Das NN Thatoi HN Pandey BD (2013): Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation. Journal of Hazardous Materials 260 141–149. doi: 10.1016/j.jhazmat.2013.04.050.

  • Ding TH Lin HH Whang CW (2005): Determination of chromium(III) in water by solid-phase microextraction with a polyimide-coated fiber and gas chromatography-flame photometric detection. Journal of Chromatography A 1062 49–55.

  • Dionex (2003): Determination of hexavalent chromium in drinking water using ion chromatography. Application Update 144. Dionex Corporation Salt Lake City. doi: LPN 1495.

  • Dominguez O Arcos MJ (2002): Simultaneous determination of chromium(VI) and chromium(III) at trace levels by adsorptive stripping voltammetry. Analytica Chimica Acta 470 241–252.

  • Dominguez O Sanllorente S Alonso MA Arcos MJ (2001): Application of an optimization procedure for the determination of chromiumin various water types by catalytic-adsorptive stripping voltammetry. Electroanalysis 13 1505–1512. doi:10.1002/1521-4109(200112)13:18<1505::AID-ELAN1505>3.0.CO;2-N.

  • Dominguez-Renedo O Ruiz-Espelt L Garcia-Astorgano N Arcos-Martinez MJ (2008): Electrochemical determination of chromium (VI) using metallic nanoparticle-modified carbon screen-printed electrodes. Talanta 76 854–858. doi: 10.1016/j.talanta.2008.04.036.

  • Dulski TR (1996): A manual for the chemical analysis of metals. ASTM manual series West Conshohocken.

  • Economou-Eliopoulos M Megremi I Vasilatos C Frei R Mpourodimos I (2017): Geochemical constraints on the sources of Cr(VI) contamination in waters of Messapia (Central Evia) Basin. Applied Geochemistry 84 13–25. doi: 10.1016/j.apgeochem.2017.05.015.

  • EFSA (2014): Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal 12 3595. doi: 10.2903/j.efsa.2014.3595.

  • EPA (1998): Toxicological review of hexavalent chromium. Washington DC. Accessed 6 August 2017.

  • Farkas J Chrastny V Novak M Cadkova E Pasava J Chakrabarti R Bullen TD (2013): Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time. Geochimica et Cosmochimica Acta 123 74–92. doi: 10.1016/j.gca.2013.08.016.

  • Fibbi D Doumett S Lepri L Checchini L Gonnelli C Coppini E Del Bubba M (2012). Distribution and mass balance of hexavalent and trivalent chromium in a subsurface horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse. Journal of Hazardous Materials 199 209–216. doi: 10.1016/j.jhazmat.2011.10.089.

  • Gao X Schulze DG (2010): Chemical and mineralogical characterization of arsenic lead chromium and cadmium in a metal-contaminated Histosol. Geoderma 156 278–286. doi: 10.1016/j.geoderma.2010.02.027.

  • Guha H (2004): Biogeochemical influence on transport of chromium in manganese sediments: experimental and modeling approaches. Journal of Contaminant Hydrology 70 1–36. doi: 10.1016/j.jconhyd.2003.08.012.

  • Guha H Saiers JE Brooks S Jardine P Jayachandran K (2001): Chromium transport oxidation and adsorption in manganese-coated sand. Journal of Contaminant Hydrology 49 311–334. doi: 10.1016/S0169-7722(00)00199-6.

  • Gustafsson JP Persson I Oromieh AG van Schaik JWJ Sjostedt C Kleja DB (2014): Chromium(III) complexation to natural organic matter: mechanisms and modeling. Environmental Science and Technology 48 1753–1761. doi: 10.1021/es404557e.

  • Hagendorfer H Goessler W (2008): Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 76 656–661. doi: 10.1016/j.talanta.2008.04.010.

  • Hara N (1983): A method of oxidizing Cr+3 for the determination of trivalent chromium. Industrial Health 21 297–299.

  • Hawley EL Deeb RA Kavanaugh MC Jacobs JA (2004): Treatment technologies for Chromium(VI). In: Guertin J Jacobs JA Avakian CP (eds): Chromium (VI) handbook. CRC Press Boca Raton 276-309. doi: 10.1002/chin.200614270.

  • Hossner LR Loeppert RH Newton RJ Szaniszlo PJ (1998): Literature review: Phytoaccumulation of chromium uranium and plutonium in plant systems. U.S. Department of Energy Office of Scientific and Technical Information Oak Ridge. doi: 10.2172/604402.

  • Hurst JA Volpato JA O’Donnell GE (2011): The determination of elements in welding fume by X-ray spectrometry and UniQuant. X-Ray Spectrometry 40 61–68. doi: 10.1002/xrs.1295.

  • Husakova L Bobrowski A Sramkova J Krolicka A Vytras K (2005): Catalytic adsorptive stripping voltammetry versus electrothermal atomic absorption spectrometry in the determination of trace cobalt and chromium in human urine. Talanta 66 999–1004. doi: 10.1016/j.talanta.2005.01.003.

  • Hwang JD Wang WJ (1994): Determination of hexavalent chromium in environmental fly ash samples by an inductively coupled plasma-atomic emission spectrometer with ammonium ion complexation. Applied Spectroscopy 48 1111–1117. doi: 10.1366/0003702944029523.

  • IAEA (2007): Speciation analysis of arsenic chromium and selenium in aquatic media. International Atomic Energy Agency Vienna. doi: IAEA-TECDOC-1542.

  • Iqbal J Shah MH Akhter G (2013): Characterization source apportionment and health risk assessment of trace metals in freshwater Rawal Lake Pakistan. Journal of Geochemical Exploration 125 94–101. doi: 10.1016/j.gexplo.2012.11.009.

  • Izbicki JA Ball JW Bullen TD Sutley SJ (2008): Chromium chromium isotopes and selected trace elements western Mojave Desert USA. Applied Geochemistry 23 1325–1352. doi: 10.1016/j.apgeochem.2007.11.015.

  • Jacobs J Testa S (2004): Overview of chromium (VI) in the environment: background and history. In: Guertin J Jacobs JA Avakian CP (eds): Chromium (VI) handbook. CRC Press Boca Raton 1–22. doi: 10.1201/9780203487969.ch1.

  • Kabata-Pendias A Mukherjee AB (2007): Trace elements from soil to human. Springer Berlin. doi: 10.1007/978-3-540-32714-1.

  • Karatepe A Korkmaz E Soylak M Elci L (2010): Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters. Journal of Hazardous Materials 173 433–437. doi: 10.1016/j.jhazmat.2009.08.098.

  • Khan N Jeong IS Hwang IM Kim JS Choi SH Nho EY Kim KS (2013): Method validation for simultaneous determination of chromium molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chemistry 141 3566–3570. doi: 10.1016/j.foodchem.2013.06.034.

  • Kierczak J Neel C Aleksander-Kwaterczak U Helios-Rybicka E Bril H Puziewicz J (2008): Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach. Chemosphere 73 776–784. doi: 10.1016/j.chemosphere.2008.06.015.

  • Kimbrough DE Cohen Y Winer AM Creelman L Mabuni C (1999): A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology 29 1–46. doi: 10.1080/10643389991259164.

  • Kotas J Stasicka Z (2000): Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 107 263–283. doi: 10.1016/S0269-7491(99)00168-2.

  • Kozuh N Stupar J Gorenc B (2000): Reduction and oxidation processes of chromium in soils. Environmental Science and Technology 34 112–119. doi: 10.1021/es981162m.

  • Kruckeberg AR (2004): Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press Seattle.

  • Kunhikrishnan A Choppala G Seshadri B Wijesekara H Bolan NS Mbene K Kim WI (2017): Impact of wastewater derived dissolved organic carbon on reduction mobility and bioavailability of As(V) and Cr(VI) in contaminated soils. Journal of Environmental Management 186 183–191. doi: 10.1016/j.jenvman.2016.08.020.

  • Kutscher D McSheehy S Wills J Jensen D (2012): Speciation analysis of Cr (III) and Cr (VI) in drinking waters using anion exchange chromatography coupled to the Thermo Scientific iCAP Q ICP-MS (Application Note 43098). Thermo Fisher Scientific Germany and Switzerland. doi: AN43098-EN0516C.

  • Kutscher D Ducos SM Rottmann L (2016): The migration of elements from toys and speciation of chromium (VI) in toy material using a low cost IC-ICP-MS solution (Application Note 43175). Thermo Fisher Scientific Germany. doi: AN43175-EN0516C.

  • Kuzelewska I Polkowska-Motrenko H Danko B (2016): Determination of chromium in biological materials by radiochemical neutron activation analysis (RNAA) using manganese dioxide. Journal of Radioanalytical and Nuclear Chemistry 310 559–564. doi: 10.1007/s10967-016-4896-0.

  • Landrot G Tappero R Webb SM Sparks DL (2012): Arsenic and chromium speciation in an urban contaminated soil. Chemosphere 88 1196–1201. doi: 10.1016/j.chemo-sphere.2012.03.069.

  • Legrand L El Figuigui A Mercier F Chausse A (2004): Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies. Environmental Science and Technology 38 4587–4595. doi: 10.1021/es035447x.

  • Leita L Margon A Pastrello A Arcon I Contin M Mosetti D (2009): Soil humic acids may favour the persistence of hexavalent chromium in soil. Environmental Pollution 157 1862–1866. doi: 10.1016/j.envpol.2009.01.020.

  • Li BH Yan XP (2007): Short-column CE coupled with inductively coupled plasma MS for high-throughput speciation analysis of chromium. Electrophoresis 28 1393–1398. doi: 10.1002/elps.200600540.

  • Li G Yang X Liang L Guo S (2012): Evaluation of the potential redistribution of chromium fractionation in contaminated soil by citric acid/sodium citrate washing. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2012.10.016.

  • Lichtin JJ (1930): Perchloric acid as oxidizing agent in the determination of chromium. Industrial and Engineering Chemistry Analytical Edition 2 126–127. doi: 10.1021/ac50069a052.

  • Longmire P Dale M Granzow K (2013): Chromium geochemistry in a wetland environment. Procedia Earth and Planetary Science 7 517–520. doi: 10.1016/j.proeps.2013.03.010.

  • Ma HL Tanner PA (2008): Speciated isotope dilution analysis of Cr(III) and Cr(VI) in water by ICP-DRC-MS. Talanta 77 189–194. doi: 10.1016/J.TALANTA.2008.06.005.

  • Madden J Srinivasan K Pohl C Shirakawa N (2011): Hexavalent chromium determination by two-dimensional capillary ion chromatography using a monolith concentrator column (Application Note). Thermo Fisher Scientific Sunnyvale. doi: LPN2962-01.

  • Mandal BK Vankayala R Uday Kumar L (2011): Speciation of chromium in soil and sludge in the surrounding tannery region Ranipet Tamil Nadu. ISRN Toxicology 2011 1–10. doi: 10.5402/2011/697980.

  • Mandal S Sarkar B Bolan N Ok YS Naidu R (2016): Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Management 186 277–284. doi: 10.1016/j.jenvman.2016.05.034.

  • Manning AH Mills CT Morrison JM Ball LB (2015): Insights into controls on hexavalent chromium in groundwater provided by environmental tracers Sacramento Valley California USA. Applied Geochemistry 62 186–199. doi: 10.1016/j.apgeochem.2015.05.010.

  • Manova A Humenikova S Strelec M Beinrohr E (2007): Determination of chromium(VI) and total chromium in water by in-electrode coulometric titration in a porous glassy carbon electrode. Microchimica Acta 159 41–47. doi: 10.1007/s00604-007-0751-x.

  • Marcinkowska M Komorowicz I Baralkiewicz D (2015): Study on multielemental speciation analysis of Cr(VI) As(III) and As(V) in water by advanced hyphenated technique HPLC/ICP-DRC-MS. Fast and reliable procedures. Talanta 144 233–240. doi: 10.1016/j.talanta.2015.04.087.

  • Marcinkowska M Komorowicz I Baralkiewicz D (2016): New procedure for multielemental speciation analysis of five toxic species: As(III) As(V) Cr(VI) Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS. Analytica Chimica Acta 920 102–111. doi: 10.1016/j.aca.2016.03.039.

  • Marcinkowska M Lorenc W Baralkiewicz D (2017): Study of the impact of bottles material and color on the presence of As III As V Sb III Sb V and Cr VI in matrix-rich mineral water – multielemental speciation analysis by HPLC/ICPDRC-MS. Microchemical Journal 132 1–7. doi: 10.1016/j.microc.2016.11.022.

  • McClain CN Maher K (2016): Chromium fluxes and speciation in ultramafic catchments and global rivers. Chemical Geology 426 135–157. doi: 10.1016/j.chemgeo.2016.01.021.

  • McSheehy S Nash M (2008): Chromium speciation in cement extracts and airborne particulates using HPLC coupled with the XSERIES 2 ICP-MS (Application Note 40807). Thermo Fisher Scientific. doi: AN40807_E01/08C.

  • Milacic R Stupar J (1995): Fractionation and oxidation of chromium in tannery waste- and sewage sludge-amended soils. Environmental Science and Technology 29 506–514. doi: 10.1021/es00002a029.

  • Miyazaki A Barnes RM (1981): Differential determination of chromium(VI)-chromium(III) with poly(dithiocarbamate) chelating resin and inductively coupled plasma-atomic emission spectrometry. Analytical Chemistry 53 364–366. doi: 10.1021/ac00225a058.

  • Mohan D Pittman CU (2006): Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials 137 762–811. doi: 10.1016/j.jhazmat.2006.06.060.

  • Nagaraj P Aradhana N Shivakumar A Shrestha AK Gowda A (2009): Spectrophotometric method for the determination of chromium (VI) in water samples. Environmental Monitoring and Assessment 157 575–582. doi: 10.1007/s10661-008-0557-2.

  • Narin I Surme Y Soylak M Dogan M (2006): Speciation of Cr(III) and Cr(VI) in environmental samples by solid phase extraction on Ambersorb 563 resin. Journal of Hazardous Materials 136 579–584. doi: 10.1016/j.jhazmat.2005.12.034.

  • Novak M Chrastny V Cadkova E Farkas J Bullen TD Tylcer J Hellerich LA (2014): Common occurrence of a positive δ 53 Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values. Environmental Science and Technology 48 6089–6096. doi: 10.1021/es405615h.

  • Novotnik B Zuliani T Scancar J Milacic R (2013): Chromate in food samples: an artefact of wrongly applied analytical methodology? Journal of Analytical Atomic Spectrometry 28 558–566. doi: 10.1039/c3ja30233d.

  • Novotnik B Zuliani T Scancar J Milacic R (2015): Content of trace elements and chromium speciation in Neem powder and tea infusions. Journal of Trace Elements in Medicine and Biology 31 98–106. doi: 10.1016/j.jtemb.2015.04.003.

  • Nriagu JO Nieboer E (1988): Chromium in the natural and human environments. Wiley New York.

  • Onweremadu EU Uhuegbu AN (2007): Chromium (III) in relation to soil properties and bioaccessibility in soils polluted by animal wastes. Nature and Science 5. Accessed 30 August 2017.

  • Oze C Bird DK Fendorf S (2007): Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America 104 6544–6549. doi: 10.1073/pnas.0701085104.

  • Oze C Fendorf S Bird DK Coleman RG (2004a): Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science 304 67–101. doi: 10.2475/ajs.304.1.67.

  • Oze C Fendorf S Bird DK Coleman RG. (2004b): Chromium geochemistry of serpentine soils. International Geology Review 46 97–126. doi: 10.2747/0020-6814.46.2.97.

  • Palmer CD Wittbrodt PR (1991): Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives 92 25–40. doi: 10.2307/3431134.

  • Park D Yun YS Jong MP (2005): Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60 1356–1364. doi: 10.1016/j.chemosphere.2005.02.020.

  • Park D Yun YS Park JM (2006): Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. Journal of Hazardous Materials 137 1254–1257. doi: 10.1016/j.jhazmat.2006.04.007.

  • Pechova A Pavlata L (2007): Chromium as an essential nutrient: a review. Veterinarni Medicina 52 1–18.

  • Radziemska M Fronczyk J Wyszkowski M (2016): Influence of organic and mineral amendments on accumulation of selected elements in oat cultivated on soil contaminated with Cr (III) and Cr (VI). In: Proc. 5th Internat. Conference on Biological Chemical and Environmental Sciences London UK 24-30. doi: 10.15242/IICBE.C0316024.

  • Reddy KR DeLaune RD (2008): Biogeochemistry of wetlands: science and applications. CRC Press Boca Raton.

  • Revanasiddappa HD Kiran Kumar TN (2001): Spectrophotometric determination of trace amounts of chromium with citrazinic acid. Journal of Analytical Chemistry 56 1084–1088.

  • Rezic I Zeiner M (2009): Determination of extractable chromium from leather. Monatshefte für Chemie – Chemical Monthly 140 325–328. doi: 10.1007/s00706-008-0026-1.

  • Rockett L Jonsson J Benson V Rumsby P Young W Clement-son A Harman M (2015): Understanding the significance of chromium in drinking water. Drinking Water Inspectorate Report Reference: Defra-8930.04/15745-0.

  • Rodriguez-Gonzalez P Marchante-Gayon JM Garcia Alonso JI Sanz-Medel A (2005): Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochimica Acta Part B: Atomic Spectroscopy 60 151–207. doi: 10.1016/j.sab.2005.01.005.

  • Sakai T McCurdy E Wilbur S (2005): Ion chromatography (IC) ICP-MS for chromium speciation in natural samples (Application Note). Agilent Technologies USA. doi: 5989-2481EN.

  • Sakai K Song J Yan D Zeng X (2013): LC-ICP-MS method for the determination of trivalent and hexavalent chromium in toy materials to meet European regulation EN71-3: 2012 Migration of certain elements (Application Note). doi: 5991-2878EN.

  • Saputro S Yoshimura K Matsuoka S Takehara K Narsito Aizawa J Tennichi Y (2014): Speciation of dissolved chromium and the mechanisms controlling its concentration in natural water. Chemical Geology 364 33–41. doi: 10.1016/j.chemgeo.2013.11.024.

  • Scancar J Milacic R (2014): A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. Journal of Analytical Atomic Spectrometry 29 427–443. doi: 10.1039/c3ja50198a.

  • Scancar J Osterman T Bukovec N Milacic R (2007a): Critical appraisal of analytical procedures for the determination of Cr(VI) in dyed leathers by 15 diphenylcarbazide spectrophotometry after sample dilution or color removal. Journal of the American Leather Chemists Association 102 85–92.

  • Scancar J Zupancic M Milacic R (2007b): Development of analytical procedure for the determination of exchangeable Cr(VI) in soils by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometry detection. Water Air and Soil Pollution 185 121–129. doi: 10.1007/s11270-007-9436-7.

  • Shahid M Shamshad S Rafiq M Khalid S Bibi I Niazi NK Rashid MI (2017): Chromium speciation bioavailability uptake toxicity and detoxification in soil-plant system: a review. Chemosphere 178 513–533. doi: 10.1016/j.chemo-sphere.2017.03.074.

  • Sharma DC Forster CF (1995): Column studies into the adsorption of chromium (VI) using sphagnum moss peat. Bioresource Technology 52 261–267. doi: 10.1016/0960-8524(95)00035-D.

  • Sperling M Xu S Welz B (1992): Determination of chromium(III) and chromium(VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Analytical Chemistry 64 3101–3108. doi: 10.1021/ac00048a007.

  • Srivastava S Prakash S Srivastava MM (1999): Chromium mobilization and plant availability – the impact of organic complexing ligands. Plant and Soil 212 203–208.

  • Stanin F (2004). The transport and fate of chromium(VI) in the environment. In Chromium(VI) handbook CRC Press Boca Raton 165–214. doi: 10.1201/9780203487969.ch5.

  • Thermo Fisher Scientific (2012): Environmental water applications notebook: hexavalent chromium – metals (Application Note 179 165). Thermo Fisher Scientific. doi: AN70050_E04/12S.

  • Trebien DOP Bortolon L Tedesco MJ Bissani CA Camargo FAO (2011): Environmental factors affecting chromium-manganese oxidation-reduction reactions in soil. Pedosphere 21 84–89. doi: 10.1016/S1002-0160(10)60082-3.

  • U.S. ATSDR (2012): Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry Atlanta. Accessed 25 June 2017.

  • U.S. DOE (2006): RCRA facility investigation – remedial investigation/corrective measures study. Feasibility study report for the rocky flats environmental technology site. U.S. Department of Energy. doi: DEN/ES022006005.DOC.

  • U.S. EPA (2017): National primary drinking water regulations. United States Environmental Protection Agency Washing-ton. Accessed 10 August 2017.

  • Vacchina V de la Calle I Seby F (2015): Cr(VI) speciation in foods by HPLC-ICP-MS: investigation of Cr(VI)/food interactions by size exclusion and Cr(VI) determination and stability by ion-exchange on-line separations. Analytical and Bioanalytical Chemistry 407 3831–3839. doi: 10.1007/s00216-015-8616-3.

  • van de Wiel HJ (2003): Determination of elements by ICP-AES and ICP-MS. Horizontal 19 National Institute of Public Health and the Environment (RIVM) Bilthoven. Accessed 16 July 2017.

  • von der Heyden BP Roychoudhury AN (2015): Application chemical interaction and fate of iron minerals in polluted sediment and soils. Current Pollution Reports 1 265–279. doi: 10.1007/s40726-015-0020-2.

  • Vyhláška MZDR ČR č. 252/2004 kterou se stanoví hygienické požadavky na pitnou vodu a teplou vodu a četnost a rozsah kontroly pitné vody (National Regulation 252/2004 Sb. On drinking water parameters and quality control) (in Czech)

  • WHO (2003): Chromium in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization Geneva. Accessed 25 June 2017.

  • WHO (2008): Guidelines for drinking-water quality. World Health Organization Geneva. Accessed 25 June 2017.

  • Wilbur S Abadin H Fay M Yu D Tencza B Ingerman L James S (2012): Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry Atlanta.

  • Wittbrodt PR Palmer CD (1997): Reduction of Cr(VI) by soil humic acids. European Journal of Soil Science 48 151–162. doi: 10.1111/j.1365-2389.1997.tb00194.x.

  • Wolf RE Morman SA Hageman PL Hoefen TM Plumlee GS (2011): Simultaneous speciation of arsenic selenium and chromium: species stability sample preservation and analysis of ash and soil leachates. Analytical and Bioanalytical Chemistry 401 2733–2745. doi: 10.1007/s00216-011-5275-x.

  • Wrobel K Wrobel K Lopez-de-Alba PL Lopez-Martinez L (1997): Enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide using internal standard and derivative spectrophotometry. Talanta 44 2129–2136. doi: 10.1016/S0039-9140(97)00092-1.

  • Yamamoto K Ohashi K (1970): Spectrophotometric determination of reducing agents utilizing the newly reduced trivalent chromium and EDTA. Bunseki Kagaku 19 120–121. doi: 10.2116/bunsekikagaku.19.120.

  • Yang L Mester Z Abranko L Sturgeon RE (2004): Determination of total chromium in seawater by isotope dilution sector field ICPMS using gc sample introduction. Analytical Chemistry 76 3510–3516. doi: 10.1021/ac0498664.

  • Yao Z Li J Xie H Yu C (2012): Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences 16 722–729. doi: 10.1016/j.proenv.2012.10.099.

  • Zayed AM Terry N (2003): Chromium in the environment: factors affecting biological remediation. Plant and Soil 249 139–156. doi: 10.1023/A:1022504826342.

  • Zhang G Zhao Y Liu F Ling J Lin J Zhang C (2013): Determination of essential and toxic elements in Cordyceps kyushuensis Kawam by inductively coupled plasma mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 72 172–176. doi: 10.1016/j.jpba.2012.08.007.

Journal information
Impact Factor

CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.212
Source Normalized Impact per Paper (SNIP) 2018: 0.462

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 180 6
PDF Downloads 239 167 11