Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores

Open access

Abstract

The intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. Bifidobacteria and lactobacilli represent important commensal bacteria with the ability to utilize complex carbohydrates. The main fermentation products from the breakdown of complex dietary carbohydrates are short chain fatty acids (SCFAs). We examined faecal samples of vegetarians (n = 10) and conventional omnivores (n = 10) to evaluate the counts and occurrence of cultivable bacteria, especially bifidobacteria and lactobacilli, using cultivation on selective media, and matrix-assisted laser desorption/ionization time-of-flight. Moreover, concentrations and molar proportion of SCFAs in faecal samples were measured. Total counts of Gram-negative anaerobic bacteria were significantly lower (P < 0.05) in vegetarian faecal samples, while others (total anaerobic bacteria, Bifidobacterium spp., Lactobacillus spp., Escherichia coli, and presumptive coliforms) were not. Neither total concentrations nor molar proportions of SCFAs in faecal samples differed (P > 0.05) between the diet groups. In total, six Bifidobacterium spp. and thirteen Lactobacillus spp. were detected via culture-dependent methods. Bifidobacteria counts and species composition in faecal samples of both groups were found to be relatively similar, regardless of the diet. Lactobacillus species varied more by individual diet.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahrné S Nobaek S Jeppsson B Adlerberth I Wold AE Molin G (1998): The normal Lactobacillus flora of healthy human rectal and oral mucosa. Journal of Applied Microbiology 85 88-94. doi:

    • Crossref
    • Export Citation
  • Cummings JH Macfarlane GT (1991): The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70 443-459. doi:

    • Crossref
    • Export Citation
  • D’Argenio G Mazzacca G (1999): Short-chain fatty acid in the human colon. In: Zappia V Della Ragione F Barbarisi A Russo G Iacovo R (eds): Advances in nutrition and cancer 2. Springer US 149-158.

  • Duncan SH Belenguer A Holtrop G Johnstone AM Flint HJ Lobley GE (2007): Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology 73 1073-1078. doi:

    • Crossref
    • Export Citation
  • Ferrocino I Di Cagno R De Angelis M Turroni S Vannini L Bancalari E Rantsiou K Cardinali G Neviani E Cocolin L (2015): Fecal microbiota in healthy subjects following omnivore vegetarian and vegan diets: culturable populations and rRNA DGGE profiling. PLoS ONE 10 e0128669. doi:

    • Crossref
    • Export Citation
  • Haddad EH Berk LS Kettering JD Hubbard RW Peters WR (1999): Dietary intake and biochemical hematologic and immune status of vegans compared with nonvegetarians. American Journal of Clinical Nutrition 70 586S-593S.

  • Jalanka-Tuovinen J Salonen A Nikkilä J Immonen O Kekkonen R Lahti L Palva A de Vos WM (2011): Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6 e23035. doi:

    • Crossref
    • Export Citation
  • Louis P Scott KP Duncan SH Flint HJ (2007): Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology 102 1197-1208. doi:

    • Crossref
    • Export Citation
  • Macfarlane S Macfarlane GT (2003): Session: short-chain fatty acids. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society 62 67-72.

  • Macfarlane GT Macfarlane S (2011): Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. Journal of Clinical Gastroenterology 45 S120-S127. doi:

    • Crossref
    • Export Citation
  • McCartney AL Wenzhi W Tannock GW (1996): Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied and Environmental Microbiology 62 4608-4613.

  • McLaughlin HP Motherway MO Lakshminarayanan B Stanton C Ross RP Brulc J Menon R O’Toole PW van Sinderen D (2015): Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. International Journal of Food Microbiology 203 109-121. doi:

    • Crossref
    • Export Citation
  • Norin KE Gustafsson JÅ Johansson G Ottava L Midtvedt T (1998): Effects of lacto-vegetarian diet on some microflora associated characteristics: a long term study. Microbial Ecology in Health and Disease 10 79-84.

  • Petricevic L Domig KJ Nierscher FJ Krondorfer I Janitschek C Kneifel W Kiss H (2012): Characterisation of the oral vaginal and rectal Lactobacillus flora in healthy pregnant and postmenopausal women. European Journal of Obstetrics & Gynecology and Reproductive Biology 160 93-99. doi:

    • Crossref
    • Export Citation
  • Picard C Fioramonti J Francois A Robinson T Neant F Matuchansky C (2005): Review article: Bifidobacteria as probiotic agents - physiological effects and clinical benefits. Alimentary Pharmacology and Therapeutics 22 495-512. doi:

    • Crossref
    • Export Citation
  • Ruengsomwong S Korenori Y Sakamoto N Wannissorn B Nakayama J Nitisinprasert S (2014): Senior Thai fecal microbiota comparison between vegetarians and nonvegetarians using PCR-DGGE and real-time PCR. Journal of Microbiology and Biotechnology 24 1026-1033. doi:

    • Crossref
    • Export Citation
  • Russell DA Ross RP Fitzgerald GF Stanton C (2011): Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology 149 88-105. doi:

    • Crossref
    • Export Citation
  • Sandes SHC Alvim LB Silva BC Zanirati DF Jung LRC Nicoli JR Neumann E Nunes AC (2014): Lactobacillus species identification by amplified ribosomal 16s-23s rRNA restriction fragment length polymorphism analysis. Beneficial Microbes. 5 471-481. doi:

    • Crossref
    • Export Citation
  • Schwiertz A Lehmann U Jacobasch G Blaut M (2002): Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. Journal of Applied Microbiology 93 157-162. doi:

    • Crossref
    • Export Citation
  • Scott KP Gratz SW Sheridan PO Flint HJ Duncan SH (2013): The influence of diet on the gut microbiota. Pharmacological Research 69 52-60. doi:

    • Crossref
    • Export Citation
  • Silvi S Verdenelli MC Orpianesi C Cresci A (2003): EU project Crownalife: Functional foods gut microflora and healthy ageing: isolation and identification of Lactobacillus and Bifidobacterium strains from faecal samples of elderly subjects for a possible probiotic use in functional foods. Journal of Food Engineering 56 195-200. doi:

    • Crossref
    • Export Citation
  • Tap J Mondot S Levenez F Pelletier E Caron C Furet JP Ugarte E Muñoz-Tamayo R Paslier DLE Nalin R Dore J Leclerc M (2009): Towards the human intestinal microbiota phylogenetic core. Environmental Microbiology 11 2574-2584. doi:

    • Crossref
    • Export Citation
  • Topping DL Clifton PM (2001): Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81 1031-1064.

  • Turroni F Foroni E Pizzetti P Giubellini V Ribbera A Merusi P Cagnasso P Bizzarri B de’Angelis GL Shanahan F van Sinderen D Ventura M (2009): Exploring the diversity of the bifidobacterial population in the human intestinal tract. Applied and Environmental Microbiology 75 1534-1545. doi:

    • Crossref
    • Export Citation
  • Turroni F van Sinderen D Ventura M (2011): Genomics and ecological overview of the genus Bifidobacterium. International Journal of Food Microbiology 149 37-44. doi:

    • Crossref
    • Export Citation
  • Veiga P Pons N Agrawal A Oozeer R Guyonnet D Brazeilles R Faurie JM Van Hylckama Vlieg JET Houghton LA Whorwell PJ Ehrlich SD Kennedy SP (2014): Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports 4 Article No. 6328. doi:

    • Crossref
    • Export Citation
  • Waldecker M Kautenburger T Daumann H Busch C Schrenk D (2008): Inhibition of histone-deacetylase activity by shortchain fatty acids and some polyphenol metabolites formed in the colon. Journal of Nutritional Biochemistry 19 587-593. doi:

    • Crossref
    • Export Citation
  • Zimmer J Lange B Frick JS Sauer H Zimmermann K Schwiertz A Rusch K Klosterhalfen S Enck P (2012): A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition 66 53-60. doi:

    • Crossref
    • Export Citation
Search
Journal information
Impact Factor


CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.212
Source Normalized Impact per Paper (SNIP) 2018: 0.462

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 657 285 10
PDF Downloads 242 148 14