Biodiversity Evaluation of Geotrichum candidum Link. Is Arthrosporic Nucleus Number in Geotrichum candidum related to the Fungus Biodiversity?

Open access


Geotrichum candidum species exhibits properties of both moulds and yeasts and its affiliation to one of the groups has been intensively discussed. It is because this filamentous microscopic fungus is displaying substantial morphological variability and wide phenotypic diversity. The present study assesses the variability of arthrosporic nucleus number of twelve isolates of G. candidum originating from artisanal manufacturing and ripened traditional Slovak cheeses. Results showed that arthrospores of the studied isolates contained on average 1.5 ± 0.7 (on the Gorodkova medium) and 1.5 ± 0.6 (on the McClary medium) Hoechst 33258-stained nuclei (range 1–4 nuclei on both agars) after a 7-day cultivation at 25°C. Majority of arthrospores comprised one nucleus, irrespective to the used nutrient-limited medium. Generally, a higher relative nucleus number per arthrospore was exhibited in yeast-like isolates with microscopic structure composed predominantly of spores, while it was lower in vegetative hyphae. These isolates originated from ewe’s lump cheese. Our study reveals that the arthrosporic nucleus number of the G. candidum strains is closely related to morphotype and origin of this yeast.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barnett JA Payne RW Yarrow D (2000): Yeasts: characteristics and identification. Cambridge University Press Cambridge.

  • Boutrou R Guéguen M (2005): Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology 102 1–20. doi: 10.1016/j.ijfoodmicro.2004.12.028.

  • Caldwel IY Trinci APJ (1973): The growth unit of the mould Geotrichum candidum. Archives of Microbiology 88 1–10. doi: 10.1007/BF00408836.

  • de Hoog GS Guarro J Gené J Figueras MJ (2014): Atlas of clinical fungi. Centraalbureau voor Schimmelcultures Utrecht.

  • Fiddy C Trinci APJ (1976): Nuclei septation branching and growth of Geotrichum candidum. Journal of General Microbiology 97 185–192. doi: 10.1099/00221287-97-2-185.

  • Hudecová A Valík Ľ Liptáková D (2010): Effect of lactic acid bacteria on growth dynamics of Geotrichum candidum during co-culture in milk. Potravinárstvo 4 387–395. (in Slovak)

  • Hudecová A Valík Ľ Liptáková D (2011): Surface growth of Geotrichum candidum: Effect of the environmental factors on its dynamics. Potravinárstvo 5 17–22. doi: 10.5219/109.

  • Kaminskyj SGW (2000): Septum position is marked at the tip of Aspergillus nidulans hyphae. Fungal Genetics and Biology 31 105–113. doi: 10.1006/fgbi.2000.1238.

  • Koňuchová M Liptáková D Šípková A Valík Ľ (2016): Role of Geotrichum candidum in dairy industry. Chemické listy 110 491–497. (in Slovak)

  • Kurtzman CP Fell JW (1998): The yeasts: A taxonomic study. Elsevier B.V. Amsterdam.

  • Kurtzman CP Fell JW Boekhout T (2011): The yeasts: A taxonomic study. Elsevier B.V. USA.

  • Laurenčík M Sulo P Sláviková E Piecková E Seman M Ebringer L (2008): The diversity of eukaryotic microbiota in the traditional Slovak sheep cheese – bryndza. International Journal of Food Microbiology 127 176–179. doi: 10.1016/j.ijfoodmicro.2008.06.016.

  • Marcellino N Benson DR (2014): The Good the Bad and the Ugly: tales of mold-ripened cheese. In: Donnelly CW (ed.): Cheese and microbes. ASM Press USA 95–132.

  • Marcellino N Beuvier E Grappin R Guéguen M Benson DR (2001): Diversity of Geotrichum candidum strains isolated from traditional cheese-making fabrications in France. Applied and Environmental Microbiology 67 4752–4759. doi: 10.1128/AEM.67.10.4752-4759.2001.

  • Merok JR Lansita JA Tunstead JR Sherley JL (2002): Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Research 62 6791–6795.

  • Montel MCH Buchin S Mallet A Delbes-Paus C Vuitton DA Desmasures N Berthier F (2014): Traditional cheeses: rich and diverse microbiota with associated benefits. International Journal of Food Microbiology 177 136–154. doi: 10.1016/j.ijfoodmicro.2014.02.019.

  • Morel G Sterck L Swennen D Marcet-Houben M Onesime D Levasseur A Jacques N Mallet S Couloux A Labadie K Amselem J Beckerich JM Henrissat B Van de Peer Y Wincker P Souciet JL Gabaldón T Tinsley CR Casaregola S (2015): Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Scientific Reports 5: 11571. doi: 10.1038/srep11571.

  • Shlezinger N Eizner E Dubinchik S Minz-Dub A Tetroashvili R Reider A Sharon A (2014): Measurement of apoptosis by SCAN© a system for counting and analysis of fluorescently labelled nuclei. Microbial Cell 1 406–415. doi: 10.15698/mic2014.12.180.

  • van den Tempel T Nielsen MS (2000): Effects of atmospheric conditions NaCl and pH on growth and interactions between moulds and yeasts related to blue cheese production. International Journal of Food Microbiology 57 193–199. doi: 10.1016/S0168-1605(00)00263-4.

  • Wouters JTM Ayad EHE Hugenholtz J Smit G (2002): Microbes from raw milk for fermented dairy products. International Dairy Journal 12 91–109. doi: 10.1016/S0958-6946(01)00151-0.

  • Zhou Y Mao S Li Y Chang W (2004): Improved fluorometric DNA determination based on the interaction of the DNA/polycation complex with Hoechst 33258. Microchimica Acta 144 191–197. doi: 10.1007/s00604-003-0086-1.

Journal information
Impact Factor

CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.212
Source Normalized Impact per Paper (SNIP) 2018: 0.462

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 151 9
PDF Downloads 139 77 5