Application Natura 2000 Data For The Invasive Plants Spread Prediction

Open access

Abstract

The distribution of invasive plants depends on several environmental factors, e.g. on the distance from the vector of spreading, invaded community composition, land-use, etc. The species distribution models, a research tool for invasive plants spread prediction, involve the combination of environmental factors, occurrence data, and statistical approach. For the construction of the presented distribution model, the occurrence data on invasive plants (Solidago sp., Fallopia sp., Robinia pseudoaccacia, and Heracleum mantegazzianum) and Natura 2000 habitat types from the Protected Landscape Area Kokořínsko have been intersected in ArcGIS and statistically analyzed. The data analysis was focused on (1) verification of the accuracy of the Natura 2000 habitat map layer, and the accordance with the habitats occupied by invasive species and (2) identification of a suitable scale of intersection between the habitat and species distribution. Data suitability was evaluated for the construction of the model on local scale. Based on the data, the invaded habitat types were described and the optimal scale grid was evaluated. The results show the suitability of Natura 2000 habitat types for modelling, however more input data (e.g. on soil types, elevation) are needed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Austin MP (2002): Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157 101–118. doi: 10.1016/S0304-3800(02)00205-3.

  • Austin M (2007): Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling 200 1–19. doi: 10.1016/j.ecolmodel.2006.07.005.

  • Bailey JP Bimová K Mandák B 2007): The potential role of polyploidy and hybridization in the further evolution of the highly invasive Fallopia taxa in Europe. Ecological Research 22 920–928. doi: 10.1007/s11284-007-0419-3

  • Bímová K Mandák B Pyšek P (2003): Experimental study of vegetative regeneration in four invasive Reynoutria taxa. Plant Ecology 166 1–11.

  • Bímová K Mandák B Kašparová I. (2004): How does Reynoutria invasion fit the various theories of invasibility? Journal of Vegetation Science 15 495–504.

  • Brych P (2009): Potential spatial distribution models of invasive plants in the Czech Republic: comparison of methods and their implementations data availability and effect of species ecology on prediction results. Master’s Thesis University of South Bohemia in České Budějovice. (in Czech)

  • Dullinger S Kleinbauer I Peterseil J Smolik M Essl F (2009): Niche based distribution modelling of an invasive alien plant: effects of population status propagule pressure and invasion history. Biological Invasions 11 2401–2414. doi: 10.1007/s10530-009-9424-5.

  • Elith J Graham CH Anderson RP Dudík M Ferrier S Guisan A Hijmans RJ Huettmann F Leathwick JR Lehmann A Li J Lohmann LG Loiselle BA Manion G Moritz C Nakamura M Nakazawa Y Overton J McC Peterson AT Phillips SJ Richardson K Scachetti-Pereira R Schapire RE Soberón J Williams S Wisz MS Zimmermann NE (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 129–151.

  • Guisan A Zimmermann EN (2000): Predictive habitat distribution models in ecology. Ecological Modelling 135 147–186. doi: 10.1111/j.2006.0906-7590.04596.x.

  • Guisan A Edwards TC Jr Hastie T (2002): Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157 89-100. doi: 10.1016/S0304-3800(02)00204-1.

  • Chytrý M Kučera T Kočí M (eds) (2001): Habitat Catalogue of the Czech Republic. Nature Conservation Agency of the Czech Republic Prague.

  • Chytrý M Maskell LC Pino J Pyšek P Vilà M Font X Smart SM (2008): Habitat invasions by alien plants: a quantitative comparison among Mediterranean subcontinental and oceanic regions of Europe. Journal of Applied Ecology 45 448–458. doi: 10.1111/j.1365-2664.2007.01398.x.

  • Chytrý M Wild J Pyšek P Jarošík V Dendoncker N Reginster I Pino J Maskell LC Vilà M Pergl J Kühn I Spangenberg JH Settele J (2012): Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography 21 75–78. doi: 10.1111/j.1466-8238.2010.00573.x.

  • Kueffer C Pyšek P Richardson M (2013): Integrative invasion science: model systems multi-site studies focused meta-analysis and invasion syndromes. New Phytologist 200 615–633. doi: 10.1111/nph.12415.

  • Leathwick JR Elith J Hastie T (2006): Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199 188–196. doi: 10.1016/j.ecolmodel.2006.05.022.

  • Lososová Z Chytrý M Tichý L Danihelka J Fajmon K Hájek O Kintrová K Láníková D Otýpková Z Řehořek V (2012): Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biological Conservation 145 179–184. doi:10.1016/j.biocon.2011.11.003.

  • Moisen GG Freeman EA Blackard JA Frescino TS Zimmermann NE Edwards Jr. TC (2006): Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting generalized additive models and tree-based methods. Ecological Modelling 199 176–187. doi: 10.1016/j.ecolmodel.2006.05.021.

  • Musil I (2005): Deciduous forests 2. Czech University of Life Sciences Prague Prague. (in Czech)

  • Nehrbass N Winkler E Müllerová J Pergl J Pyšek P Perglová I (2007): A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biological Invasions 9 383–395. doi: 10.1007/s10530-006-9040-6

  • Peterson AT Soberón J Pearson RG Anderson RP Martínez-Meyer E Nakamura M Araújo MB (2011): Ecological niches and geographic distributions. Princeton University Press New Jersey.

  • Pearson RG Dawson TP Berry PM Harrison PA (2002): SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154 289–300. doi: 10.1016/S0304-3800(02)00056-X.

  • Pearson RG Raxworthy CJ Nakamura M Peterson AT (2007): Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34 102–117.

  • Pit JPW Kriticos DJ Dodd MB (2011): Temporal limits to simulating the future spread pattern of invasive species: Buddleja davidii in Europe and New Zealand. Ecological Modelling 222 1880–1887. doi: 10.1016/j.ecolmodel.2011.03.023.

  • Pyšek P Brock JH Bímová K Mandák B Jarošík V Koukolíková I Pergl J Štěpánek J. (2003): Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invasibility at the genotype level. American Journal of Botany 90 1487–1495. doi: 10.3732/ajb.90.10.1487.

  • Pyšek P Richardson DM (2006): The biogeography of naturalization in alien plants. Journal of Biogeography 33 2040–2050. doi: 10.1016/j.ecolmodel.2011.03.023.

  • Pyšek P Chytrý M Pergl J Sádlo J Wild J (2012a): Plant invasions in the Czech Republic: current state introduction dynamics invasive species and invaded habitats. Preslia 84 575–629.

  • Pyšek P Jarošík V Hulme PE Pergl J Hejda M Schaffner U Vilà M (2012b): A global assessment of invasive plant impacts on resident species communities and ecosystems: the interaction of impact measures invading species’ traits and environment. Global Change Biology 18 1725–1737.

  • Walck JL Baskin JM Baskin CC (1999): Relative competitive abilities and growth characteristics of a narrowly endemic and geographically widespread Solidago species (Asteraceae). American Journal of Botany 86 820–828. doi: 10.2307/2656703.

  • Zimmermann NE Edwards TC Graham CG Pearman PB Svenning J-C (2010): New trends in species distribution modelling. Ecography 33 985–989. doi: 10.1111/j.1600-0587.2010.06953.x.

Search
Journal information
Impact Factor


CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.212
Source Normalized Impact per Paper (SNIP) 2018: 0.462

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 56 3
PDF Downloads 70 52 3