Effect Of Dietary Medium-Chain Fatty Acids On Campylobacter Jejuni In Broiler Chickens

Open access


The inhibitory properties of a commercial product Fortibac® containing medium-chain fatty acids on Campylobacter jejuni were determined. The product is a mixture of C6:0-C14:0 fatty acids. After testing the antibacterial properties towards C. jejuni in in vitro conditions, an experimental infection on broiler chickens was performed to confirm the results. The product was admixed with feed (final concentrations 0, 0.25, and 0.5%) and broiler chickens were artificially infected with C. jejuni VFU 612. The chickens were infected on day 16 of age, while the aforementioned feed mixtures were used during the entire fattening period (days 0–35). After the infection, the dynamics of C. jejuni shedding was evaluated among treated groups and the control. Reduction of the number of campylobacters by the product with medium-chain fatty acids was not confirmed in vivo. It is assumed that the final amount of potentially active fatty acids in the digestive tract was not sufficient. The product, however, had a clear beneficial impact on mortality of infected chickens.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Batz MB Hoffmann S Morris Jr. JG (2011): Ranking the risks: the 10 pathogen-food combinations with the greatest burden on public health. Emerging Pathogens Institute University of Florida Gainesville.

  • Desbois AP Smith VJ (2010): Antibacterial free fatty acids: activities mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology 85 1629–1642. doi: 10.1007/s00253-009-2355-3.

  • EFSA (2014): The European Union summary report on trends and sources of zoonoses zoonotic agents and food-borne outbreaks in 2012. EFSA Journal 12 2: 3547. doi: 10.2903/j.efsa.2014.3547.

  • Folch J Lees M Sloane-Stanley GH (1957): A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226 497–509.

  • Grilli E Vitari F Domeneghini C Palmonari A Tosi G Fantinati P Piva A (2013): Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: from in vitro to in vivo a proof of concept. Journal of Applied Microbiology 114 308–317. doi: 10.1111/jam.12053.

  • Gupta A Nelson JM Barrett TJ Tauxe RV Rossiter SP Friedman CR Angulo FJ (2004): Antimicrobial resistance among Campylobacter strains United States 1997–2001. Emerging Infectious Diseases 10 1102–1109.

  • Hecht D. W. (1999): Susceptibility testing of anaerobic bacteria. Manual of clinical microbiology. American Society for Microbiology Washington DC 1555-1562.

  • Hermans D Martel A Garmyn A Verlinden M Heyndrickx M Gantois I Haesebrouck F Pasmans F (2012): Application of medium-chain fatty acids in drinking water increases Campylobacter jejuni colonization threshold in broiler chicks. Poultry Science 91 1733–1738.

  • Lieberman S Enig MG Preuss HG (2006): A review of monolaurin and lauric acid: natural virucidal and bactericidal agents. Alternative and Complementary Therapies 12 310–314. doi: 10.1089/act.2006.12.310.

  • Molatová Z Skřivanová E Baré J Houf K Bruggeman G Marounek M (2011): Effect of coated and non-coated fatty acid supplementation on broiler chickens experimentally infected with Campylobacter jejuni. Journal of Animal Physiology and Animal Nutrition 95 701–706. doi: 10.1111/j.1439-0396.2010.01100.x.

  • WHO (2012): The global view of campylobacteriosis: report of an expert consultation Utrecht Netherlands 9–11 July 2012. World Health Organization Geneva Switzerland.

Journal information
Impact Factor

CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.212
Source Normalized Impact per Paper (SNIP) 2018: 0.462

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 111 5
PDF Downloads 158 94 3