Mechanical Properties of Granular Materials and Their Impact on Load Distribution in Silo: A Review

J. Horabik 1  and M. Molenda 1
  • 1 Polish Academy of Sciences, Institute of Agrophysics, Lublin, Poland


Mechanical properties of granular materials and their impact on load distribution in storage silo were discussed with special focus on materials of biological origin. Granular materials classification was briefly outlined. The evolution of constitutive models of granular materials developed in the frame of mechanics of continuum was addressed. Analytical methods, Finite Element Methods (FEM), and Discrete Element Methods (DEM) of estimation of silo pressure were discussed. Special attention was paid to the following issues: dynamic pressure switch in the first moment of silo discharge, asymmetry of loads due to eccentric discharge, and impact of uncontrolled increase of moisture content of grain on silo pressures.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anand A, Curtis JS, Wassgren CS, Hancock BC, Ketterhagen WR (2009): Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 64, 5268-5275. doi: 10.1016/j.ces.2009.09.001.

  • Balevičiu R, Sielamowicz I, Mróz Z, Kačianauskas R (2011): Investigation of wall stress and outflow in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements. Powder Technology, 214, 322-336. doi: 10.1016/j.powtec.2011.08.042.

  • Blight GE (1986): Swelling pressure of wetted grain. Bulk Solids Handling, 6, 1135-1140.

  • Borcz A, Hamdy HA Abd-el-Rahim (1991): Wall pressure measurements in eccentrically discharged cement silos. Bulk Solids Handling, 11, 469-476.

  • Bransby PL, Blair-Fish PM (1975): Deformations near rupture surfaces in flowing sand. Géotechnique, 25, 384-389.

  • Britton MG, Zhang Q, McCullagh K (1993): Moisture induced vertical loads in model grain bin. ASAE Paper No. 93-4503, St. Joseph.

  • Chattopadhyay A, Rao RK, Parameswaran MA (1994): On the classification of bulk solids. Bulk Solids Handling, 14, 339-344.

  • Cundall PA, Strack OD (1979): A discrete element model for granular assemblies. Géotechnique, 29, 47-65.

  • Dale AC, Robinson RN (1954): Pressure in deep grain storage structures. Agricultural Engineering, 35, 570-573.

  • Drescher A (1991): Analytical methods in bin-load analysis. Elsevier, Amsterdam-Oxford-New York-Tokyo.

  • Drescher A, Cousens TW, Bransby PL (1978): Kinematics of the mass flow of granular material through a plane hopper. Géotechnique, 28, 27-42.

  • Drucker DC, Prager W (1952): Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10, 157-165.

  • Eurocode 1 (2003): Actions on structures. Part 4: Actions in silos and tanks. Ref. No. EN 1991-4.

  • González-Montellano C, Gallego E, Ramírez-Gómez Á, Ayuga F (2012): Three dimensional discrete element models for simulating the filling and emptying of silos: Analysis of numerical results. Computers and Chemical Engineering, 40, 22-32. doi: 10.1016/j.compchemeng.2012.02.007.

  • Guaita M, Couto A, Ayuga F (2003): Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers. Biosystems Engineering, 85, 101-109.

  • Holst JMFG, Ooi JY, Rotter JM, Rong GH (1999): Numerical modeling of silo filling II. Discrete element analyses. Journal of Engineering Mechanics - ASCE, 125, 104-110.

  • Horabik J, Molenda M (2000): Grain pressure in a model silo as affected by moisture content increase. International Ag-rophysics, 14, 385-392.

  • ISO 3535 (1977): Continuous mechanical handling equipment -Classification and symbolisation of bulk materials. International Standard. ISO, Geneva.

  • Iwashita K, Oda M (2000): Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 109, 192-205.

  • Jaeger HM, Nagel SR, Behringer RP (1996): Granular solids, liquids and gases. Reviews of Modern Physics, 68, 1259-1273.

  • Janssen HA (1895): Experiments on grain pressure in silos. Verein Deutscher Ingenieure, Zetschrift (Düsseldorf), 39, 1045-1049. (in German)

  • Jenike AW (1961): Gravity flow of bulk solids. Bulletin of the University of Utah, 52, 1-309.

  • Jian F, Jayas DS (2012): The ecosystem approach to grain storage. Agricultural Research, 1, 148-156. doi: 10.1007/ s40003-012-0017-7.

  • Johnson KL, Kendall K, Roberts AD (1971): Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 324, 301-313.

  • Kobyłka R, Molenda M (2013): DEM modelling of silo load asymmetry due to eccentric filling and discharge. Powder Technology, 233, 65-71. doi: 10.1016/j.powtec.2012.08.039.

  • Kobyłka R, Molenda M (2014): DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technology, 256, 210-216. doi: 10.1016/j.powtec.2014.02.030.

  • Kou HP, Knight PC, Parker DJ, Tsuji Y, Adams MJ, Seville JPK (2002): The influence of DEM simulation parameters on the particle behaviour in a V-mixer. Chemical Engineering Science, 57, 3621-3638.

  • Kuwabara G, Kono K (1987): Restitution coefficient in a collision between 2 spheres. Japanese Journal of Applied Physics, 26, 1230-1233.

  • Łapko A (2010): Pressure of agricultural bulk solids under eccentric discharging of cylindrical concrete silo bin. International Agrophysics, 24, 51-56.

  • Masson S, Martinez J (2000): Effect of particle mechanical properties on silo flow and stress from distinct element simulations. Powder Technology, 109, 164-178. doi: 10.1016/ S0032-5910(99)00234-X.

  • Molenda M, Horabik J, Ross IJ (1996): Wear-in effects on loads and flow in a smooth-wall bin. Transactions of the ASAE, 39, 225-231.

  • Molenda M, Horabik J, Thompson SA, Ross IJ (2002): Bin loads induced by eccentric filling and discharge of grain. Transactions of the ASAE, 45, 781-785.

  • Muite BK, Quinn SF, Sundaresan S, Rao KK (2004): Silo music and silo quake: granular flow-induced vibration. Powder Technology, 145, 190-202. doi: 10.1016/j.po-wtec.2004.07.003.

  • Mühlhaus HB, Vardoulakis I (1987): The thickness of shear bands in granular materials. Géotechnique, 37, 271-283.

  • Ord A, Hobbs B, Regenauer-Lieb K (2007): Shear band emergence in granular materials -a numerical study. International Journal for Numerical and Analytical Methods in Geome-chanics, 31, 373-393. doi: 10.1002/nag.590.

  • Parafiniuk P, Molenda M, Horabik J (2013): Discharge of rapeseeds from a model silo: physical testing and Distinct

  • Element Method simulation. Computers and Electronics in Agriculture, 97, 40-46.

  • Peleg M (1985): The role of water in rheology of hygroscopic food powders. In: Simataos D, Multon JL (eds): Properties of water in foods. Martinus Nijhoff Publishers, Dordrecht, 394-404.

  • Potyondy DO, Cundall PA (2004): A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364. doi: 10.1016/j. ijrmms.2004.09.011.

  • Roberts AW (2012): Review of silo loadings associated with the storage of bulk granular materials. In: CIGR-AgEng 2012 International Conference of Agricultural Engineering, Valencia, Spain, pp. C-0016.

  • Roberts AW, Wensrich CM (2002): Flow dynamics or 'quaking' in gravity discharge from silos. Chemical Engineering Science, 57, 295-305.

  • Rong GH, Negi SC, Jofriet JC (1995): Simulation of flow behaviour of bulk solids in bins. Part 2: Shear bands, flow corrective inserts and velocity profiles. Journal of Agricultural Engineering Research, 62, 257-269. doi: 10.1006/ jaer.1995.1084.

  • Sykut J, Molenda M, Horabik J (2008): Influence of filling method on packing structure in model silo and DEM simulations. Granular Matter, 10, 273-278.

  • Tejchman J (1998): Numerical simulation of filling in silos with a polar hypoplastic constitutive model. Powder Technology, 96, 227-239. doi: 10.1016/S0032-5910(97)03378-0.

  • Tejchman J, Gudehus G (1993): Silo-music and silo-quake experiments and a numerical Cosserat approach. Powder Technology, 76, 201-212. doi: 10.1016/S0032-5910(05)80028-2.

  • Tejchman J, Wu IW (1993): Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica, 99, 69-74.

  • Thornton C, Ning Z (1998): A theoretical model for the stick/ bounce behaviour of adhesive, elastic-plastic spheres. Powder Technology, 99, 154-162. doi: 10.1016/S0032-5910(98)00099-0.

  • Wang Y, Wensrich CM, Ooi JY (2012): Rarefaction wave propagation in tapered granular columns. Chemical Engineering Science, 71, 32-38. doi: 10.1016/j.ces.2011.12.023.

  • Wensrich C (2002): Experimental behaviour of quaking in tall silos. Powder Technology, 127, 87-94. doi: 10.1016/S0032-5910(02)00105-5.

  • Wensrich C (2003): Numerical modeling of quaking in tall silos. International Journal of Mechanical Sciences, 45, 541-551. doi: 10.1016/S0020-7403(03)00057-2.

  • Wiącek J, Molenda M (2011): Moisture-dependent physical properties of rapeseed - experimental and DEM modeling. International Agrophysics,25, 59-65,

  • Wójcik M., Tejchman J (2009): Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology, 192, 298-310.

  • Wojtkowski M, Pecen J, Horabik J, Molenda M (2010): Impact of rapeseed against flat surface: Physical testing and DEM simulation with two contact models. Powder Technology, 198, 61-68. doi: 10.1016/j.powtec.2009.10.015.

  • Zhang Q, Britton MG (1995): Predicting hygroscopic loads in grain storage bins. Transactions of the ASAE, 38, 1221-1226.

  • Zhang Q, Britton MG, Jaremek R (1993): Dynamic loads during discharge for wheat, barley and canola in a smooth and a corrugated-walled model bin. Journal of Agricultural Engineering Research, 56, 111-119. doi: 10.1006/jaer.1993.1065.

  • Zhang Q, Puri VM, Manbeck HB (1994): Applicability of a two-parameter failure criterion to wheat en masse. Transactions of the ASAE, 37, 571-575.


Journal + Issues