Cost Effective Method for Toxicity Screening of Pharmaceutical Wastewater Containing Inorganic Salts and Harmful Organic Compounds

Open access


Pharmaceutical wastewater biological treatment plants are stressed with multi-component wastewater and unexpected variations in wastewater flow, composition and toxicity. To avoid operational problems and reduced wastewater treatment efficiency, accurate monitoring of influent toxicity on activated sludge microorganisms is essential. This paper outlines how to predict highly toxic streams, which should be avoided, using measurements of biochemical oxygen demand (BOD), if they are made in a wide range of initial concentration. The results indicated that wastewater containing multivalent Al3+ cations showed a strong toxic effect on activated sludge biocenosis irrespectively of dilutions, while toxicity of phenol and formaldehyde containing wastewater decreased considerably with increasing dilution. Activated sludge microorganisms were not sensitive to wastewater containing halogenated sodium salts (NaCl, NaF) and showed high treatment capacity of saline wastewater. Our findings confirm that combined indicators of contamination, such as chemical oxygen demand (COD), alone do not allow evaluating potential toxic influence of wastewater. Obtained results allow identifying key inhibitory substances in pharmaceutical wastewater and evaluating potential impact of new wastewater streams or increased loading on biological treatment system. Proposed method is sensitive and cost effective and has potential for practical implementation in multiproduct pharmaceutical wastewater biological treatment plants.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Neumegen R. A. Fernández-Alba A. R. Chisti Y. Toxicities of Trichlosan Phenol and Copper Sulfate in Activated Sludge. Environmental Toxicology 2005:20(2):160–164. doi:10.1002/tox.20090

  • [2] Davies P. S. Murdoch F. The increasing importance of assessing toxicity in determining sludge health and management policy. Measurement and Control 2002:35(8):238–242. doi:10.1177/002029400203500804

  • [3] Katritzky A. R. et al. Estimating the toxicities of organic chemicals in activated sludge process. Water Research 2010:44(8):2451–2460. doi:10.1016/j.watres.2010.01.009

  • [4] Jurga A. Gemza N. Janiak K. A concept development of an early warning system for toxic sewage detection. E3S Web of Conferences 2017:17(00036):1–8. doi:10.1051/e3sconf/20171700036

  • [5] Sanganyado E. Lu Z. Fu Q. Schlenk D. Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research 2017:124:527–542. doi:10.1016/j.watres.2017.08.003

  • [6] Kraigher B. Kosjek T. Heath E. Kompare B. Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research 2008:42(17):4578–4588. doi:10.1016/j.watres.2008.08.006

  • [7] Vasiliadou I. A. Molina R. Martinez F. Melero J. A. Stathopoulou P. M. Tsiamis G. Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of The Total Environment 2018:630:808–819. doi:10.1016/j.scitotenv.2018.02.095

  • [8] Rozitis Dz. Strade E. COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Journal of Materials and Environmental Science 2015:6(2):507–512.

  • [9] Tekin H. et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials 2006:136(2):258–265. doi:10.1016/j.jhazmat.2005.12.012

  • [10] Lefebvre O. et al. Biological treatment of pharmaceutical wastewater from the antibiotics industry. Water Science and Technology 2014:69(4):855–861. doi:10.2166/wst.2013.729

  • [11] Ma K. Qin Z. Zhao Z. Zhao C. Liang S. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere 2016:158:163–170. doi:10.1016/j.chemosphere.2016.05.052

  • [12] Shi X. Yeap T. S. Huang S. Chen J. Ng H. Y. Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology 2018:258:240–246. doi:10.1016/j.biortech.2018.02.110

  • [13] Ren S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International 2004:30(8):1151–1164. doi:10.1016/j.envint.2004.06.003

  • [14] Sirtori C. et al. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research 2009:43(3):661–668. doi:10.1016/j.watres.2008.11.013

  • [15] Cēbere B. Faltiņa E. Zelčāns N. Kalniņa D. Toxicity tests for ensuring successful industrial wastewater treatment plant operation. Environmental and Climate Technologies 2009:3(3):41–47. doi:10.2478/v10145-009-0005-8

  • [16] Oller I. Malato S. Sánchez-Pérez J. A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of Total Environment 2011:409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.061

  • [17] Philp J. C. et al. Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta 2003:487(1):61–74. doi:10.1016/S0003-2670(03)00358-1

  • [18] Xiao Y. De Araujo C. Sze C. C. Stuckey D. C. Toxicity measurement in biological wastewater treatment processes: A review. Journal of Hazardous Materials 2015:286:15–29. doi:10.1016/j.jhazmat.2014.12.033

  • [19] Hassan S. H. A. Van Ginkel S. W. Hussein M. A. M. Abskharon R. Oh S. E. Toxicity assessment using different bioassays and microbial biosensors. Environment International 2016:92–93:106–118. doi:10.1016/j.envint.2016.03.003

  • [20] Kungolos A. Evaluation of toxic properties of industrial wastewater using on-line respirometry. Journal of Environmental Science and Health. Part A Toxic/hazardous Substances & Environmental Engineering 2005:40(4):869–880. doi:10.1081/ESE-200048292

  • [21] Gutiérrez M. Etxebarria J. de las Fuentes L. Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research 2002:36(4):919–924. doi:10.1016/S0043-1354(01)00299-8

  • [22] Meherdad F. et al. Identification of Bacterial Population of Activated Sludge Process and Their Potentials in Pharmaceutical Effluent Treatment. British Biotechnology Journal 2014:4(3):317–324. doi:10.9734/BBJ/2014/7913

  • [23] Surerus V. Giordano G. Teixeira L. A. C. Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering 2014:31(2):385–392. doi:10.1590/0104-6632.20140312s00002516

  • [24] Abdalla K. Z. Hammam G. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. International Journal of Sciences: Basic and Applied Research 2014:13(1):42–48.

  • [25] Mangkoedihardjo S. Biodegradability Improvement of Industrial Wastewater Using Hyacinth. Journal of Applied Sciences 2006:6:1409–1414. doi:10.3923/jas.2006.1409.1414

  • [26] Cui W. Cui Z. Zhang N. Ma Q. Liu L. Zhang X. A new efficient technology for refractory phenol-formaldehyde resin wastewater treatment. RSC Advances 2016:6(23):19078–19088. doi:10.1039/C5RA21502A

  • [27] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Formaldehyde. Atlanta: U.S. Department of Health and Human Services Public Health Service 1999.

  • [28] Eiroa M. Vilar A. Amor L. Kennes C. Veiga M. C. Biodegradation and effect of formaldehyde and phenol on the denitrification process. Water Research 2005:39(2–3):449–455. doi:10.1016/j.watres.2004.09.017

  • [29] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Phenol. Atlanta: U.S. Department of Health and Human Services Public Health Service 2008.

  • [30] Yoong E. T. Lant P. A. Greenfield P. F. In situ respirometry in an SBR treating wastewater with high phenol concentrations. Water Research 2000:34(1):239–245. doi:10.1016/S0043-1354(99)00142-6

  • [31] Hussain A. Dubey S. K. Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources and Industry 2015:11:81–90. doi:10.1016/j.wri.2015.05.002

  • [32] Pradeep N. V. et al. Biological removal of phenol from wastewaters: a mini review. Applied Water Science 2015:5(2):105–112. doi:10.1007/s13201-014-0176-8

  • [33] Heys K. A. Shore R. F. Pereira M. G. Jones K. C. Martin F. L. Risk assessment of environmental mixture effects. RSC Advances 2016:6(53):47844–47857. doi:10.1039/C6RA05406D

  • [34] Kargi F. Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters 2002:24(19):1569–1572. doi:10.1023/A:1020379421917

  • [35] Lefebvre O. Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research 2006:40(20):3671–3682. doi:10.1016/j.watres.2006.08.027

  • [36] Shi X. Lefebvre O. Ng K. K. Ng H.Y. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology 2014:153:79–86. doi:10.1016/j.biortech.2013.11.045

  • [37] Zhang X. Gao J. Zhao F. Zhao Y. Li Z. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment. Journal of Environmental Sciences 2014:26(6):1369–1374. doi:10.1016/S1001-0742(13)60613-0

  • [38] Wang R. et al. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. Bioresource Technology 2016:204:65–70. doi:10.1016/j.biortech.2015.12.062

  • [39] Ochoa-Herrera V. et al. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research 2009:43(13):3177–3186. doi:10.1016/j.watres.2009.04.032

  • [40] Negrea A. et al. Studies Concerning the Aluminium Ions Removal from Waste Water. Chemical Bulletin of "POLITEHNICA" University of Timişoara 2005:50:148–51.

  • [41] Pour P. G. Takassi M. A. Hamoule T. Removal of Aluminum from Water and Industrial Waste Water. Oriental Journal of Chemistry 2014:30(3):1365–1369. doi:10.13005/ojc/300356

  • [42] Olaniran A. O. Balgobind A. Pillay B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences 2013:14(5):10197–10228. doi:10.3390/ijms140510197

  • [43] Jaishankar M. Tseten T. Anbalagan N. Mathew B. B. Beeregowda K. N. Toxicity mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 2014:7(2):60–72. doi:10.2478/intox-2014-0009

  • [44] Rosseland B. O. Eldhuset T. D. Staurnes M. Environmental effects of aluminium. Environmental Geochemistry and Health 1990:12(1–2):17–27. doi:10.1007/BF01734045

  • [45] Sparling D. W. Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. London: Academic Press 2016.

  • [46] Comber S. D. W. Gardner M. J. Churchley J. Aluminium speciation: implications of wastewater effluent dosing on river water quality. Chemical Speciation & Bioavailability 2005:17(3):117–128. doi:10.3184/095422905782774874

  • [47] Klimek B. et al. The toxicity of aluminium salts to Lecane inermis rotifers: are chemical and biological methods used to overcome activated sludge bulking mutually exclusive? Archives of Environmental Protection 2013:39(3):127–138. doi:10.2478/aep-2013-0024

Journal information
Impact Factor

CiteScore 2018: 1.67

SCImago Journal Rank (SJR) 2018: 1.21
Source Normalized Impact per Paper (SNIP) 2018: 0.86

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 33
PDF Downloads 64 64 17