The Impact of Parallel Energy Consumption on the District Heating Networks

Open access


The aim of this study is to evaluate and compare the impacts of heat recovery ventilation (HRV) and exhaust air heat pump (EAHP)-based solutions used in renovated buildings, which make it possible to reach performance class C in district heating (DH) area CO2 emissions, primary energy consumption and total energy costs for consumers. Evaluation is based on the methodology presented in the previous research paper [1]. Calculation results show that the use of EAHP has a negative impact on DH sustainability (heat losses in the DH network, DH heat price, reduced consumption of DH heat) and CO2 emissions related to energy delivery (heat and electricity) to consumers in the DH area. Positive aspects of the EAHP use include the fact that almost the same primary energy consumption level can be achieved with lesser (up to 7 %) annual costs (annual capital costs, DH heat costs and electricity costs) and lower initial investments (about 10 %). At the same time, every renovated building with EAHP will experience a negative impact on heat prices. In DH areas where almost all buildings are renovated with EAHP, cost savings are not as evident compared to buildings with HRV in DH areas where the use of parallel consumption solutions (EAHP) is minimized. It is reasonable to promote these renovation packages and solutions that benefit the building’s primary energy reduction, and also do not increase electric energy consumption (additional electric power generators are needed) and do not damage DH networks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Latosov E. Volkova A. Siirde A. Kurnitski J. Thalfeldt M. Methodological approach to determining the effect of parallel energy consumption on district heating system. Environmental and Climate Technologies 2017:19:5–14. doi:10.1515/rtuect-2017-0001

  • [2] Blumberga A. Cilinskis E. Gravelsins A. Ferrao P. Le O. Analysis of regulatory instruments promoting building energy efficiency. Energy Procedia 2018:147:258–267. doi:10.1016/j.egypro.2018.07.090

  • [3] Augustins E. Jaunzems Dz. Rochas C. Kamenders A. Managing energy efficiency of buildings: analysis of ESCO experience in Latvia. Energy Procedia 2018:147:614–623. doi:10.1016/j.egypro.2018.07.079

  • [4] Zogla G. Blumberga A. Energy Consumption and Indoor Air Quality of Different Ventilation Possibilities in a New Apartment Building. Environmental and Climate Technologies 2010:4:130–135. doi:10.2478/v10145-010-0028-1

  • [5] Andric I. Pina A. Ferrao P. Fournier J. Lacarriere B. Le Corre O. Assessing the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand forecast. Energy Procedia 2017:132:963–968. doi:10.1016/j.egypro.2017.05.093

  • [6] Ilomets S. Kuusk K. Paap L. Arumagi E. Kalamees T. Impact of Linear Thermal Bridges on Thermal Transmittance of Renovated Apartment Buildings. Journal of Civil Engineering and Management 2017:23(1):96–104. doi:10.3846/13923730.2014.976259

  • [7] Zagorskas J. Kazimieras E. Turskis Z. Burinskien M. Blumberga A. Blumberga D. Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy and Buildings 2014:78:35–42. doi:10.1016/j.enbuild.2014.04.010

  • [8] Delmastro C. Martinsson F. Dulac J. Corgnati S. P. Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm. Energy 2017:138:1209–1220. doi:10.1016/

  • [9] Aberg M. Henning D. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings. Energy Policy 2011:39(12):7839–7852. doi:10.1016/j.enpol.2011.09.031

  • [10] Zagorskas J. Paliulis G. M. Burinskiene M. Venckauskaite J. Rasmussen T. V. Energetic refurbishment of historic brick buildings: Problems and opportunities. Environmental and Climate Technologies 2013:12(1):20–27. doi:10.2478/rtuect-2013-0012

  • [11] Kuusk K. Kalamees T. Estonian grant scheme for renovating apartment buildings. Energy Procedia 2016:96:628–637. doi:10.1016/j.egypro.2016.09.113

  • [12] Leoncini L. The Primary Energy Factors play a central role in European 2020 targets achievement. Policies for Sustainable Construction 2016:113–120.

  • [13] EU Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union 2010:13–35.

  • [14] Pakere I. Romagnoli F. Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. doi:10.1016/j.egypro.2018.08.219

  • [15] Gustavsson L. Dodoo A. Truong N. L. Danielski I. Primary energy implications of end-use energy efficiency measures in district heated buildings. Energy and Buildings 2011:43(1):38–48. doi:10.1016/j.enbuild.2010.07.029

  • [16] Le Truong N. Dodoo A. Gustavsson L. Effects of heat and electricity saving measures in district-heated multistory residential buildings. Applied Energy 2014:118(1):57–67. doi:10.1016/j.apenergy.2013.12.009

  • [17] Ziemele J. Cilinskis E. Zogla G. Gravelsins A. Impact of economical mechanisms on CO2 emissions from non ETS district heating in Latvia using system dynamic approach. International Journal of Energy and Environmental Engineering 2018:9(2):111–121. doi:10.1007/s40095-017-0241-9

  • 9[18] Volkova A. Masatin V. Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150(1):253–261. doi:10.1016/

  • [19] Gustafsson M. Gustafsson M. S. Myhren J. A. Bales C. Holmberg S. Techno-economic analysis of energy renovation measures for a district heated multi-family house. Applied Energy 2016:177(1):108–116. doi:10.1016/j.apenergy.2016.05.104

  • [20] Thalfeldt M. Kurnitski J. Latosov E. Exhaust air heat pump connection schemes and balanced heat recovery ventilation effect on district heat energy use and return temperature. Applied Thermal Engineering 2018:128(5):402–414. doi:10.1016/j.applthermaleng.2017.09.033

  • [21] RT I 24.03.2015 2 Korterelamute rekonstrueerimise toetuse andmise tingimused Estonian Ministry of Economy and Communications Ordinance 2015.

  • [22] Thalfeldt M. Kurnitski J. Latosov E. The Effect of Exhaust Air Heat Pump on District Heat Energy Use and Return Temperature. CLIMA 2016 – proceedings of the 12th REHVA World Congress: Volume 3. Aalborg: Aalborg University 2016.

  • [23] Software IDA-ICE. IDA Indoor Climate and Energy 4.7.

  • [24] Energiatohususe miinimumnouded [In Estonian]. Estonian Ministry of Economy and Communications Ordinance No. 55 03.06.2015.

  • [25] Estonian Competition Authority. Soojuse piirhinna kooskolastamise pohimotted [In Estonian]. Tallinn 2013.

  • [26] Valisohku valjutatava susinikdioksiidi heite arvutusliku maaramise meetodid [In Estonian]. Riigi Teataja 2017.

  • [27] Uiga J. CO2 emissions resulting from Final Energy Consumption – A Case Study of Tartu City. Estonian University of Life Sciences Tartu 2014.

Journal information
Impact Factor

CiteScore 2018: 1.67

SCImago Journal Rank (SJR) 2018: 1.21
Source Normalized Impact per Paper (SNIP) 2018: 0.86

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 469 441 22
PDF Downloads 422 394 15