Phenotypic and genotypic evaluation of adherence and biofilm development in Candida albicans respiratory tract isolates from hospitalized patients

Open access


In recent years, a significant number of epidemiological variations have been observed for fungal infections. In immunocompromised patients, Candida albicans is crucially involved in invasive infections, mostly originating in respiratory tract colonization. The global rise in candidiasis has led researchers to investigate possible correlations between fungal strains virulence profiles and their pathogenic potential, among the most investigated genes being those involved in adherence and biofilm development. In this study, we established the adherence gene profiles of C. albicans strains isolated from respiratory tract secretions in patients hospitalized for cardiovascular diseases and correlated them with the ability of the respective strains to colonize the epithelial cells and form biofilms on the inert substratum. The strains isolated from the lower respiratory tract exhibited the highest adherence capacity and were intensive biofilm producers. The SAP9, ALS3, ALS5, and ALS6 genes were the most frequently detected. There was a significant association between the presence of ALS 3 gene and the cellular substrate colonizing potential of the harboring strains. We also found that the strains expressing SAP9 were more virulent in the phenotypic assays. Detecting the presence of adherence genes from different clinical isolates is a cost-effective tool that would allow researchers to predict the virulence of a certain strain and estimate its potential to adhere to host cells and develop biofilms.

1. Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327-35. DOI: 10.1016/S0966-842X(01)02094-7

2. Cirpaciu D, Goanţă CM, Tusaliu M, Curutiu C, Budu V. Microbial etiology of acute otitis externa-a one year study. Rom Biotech Lett. 2017;22(1):12316.

3. Fanello S, Bouchara J, Sauteron M, Delbos V, Parot E, Marot-Leblond A, et al. Predictive value of oral colonization by Candida yeasts for the onset of a nosocomial infection in elderly hospitalized patients. J Med Micro-biol. 2006;55(2):223-8. DOI: 10.1099/jmm.0.46155-0

4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309-17. DOI: 10.1086/421946

5. Grimoud AM, Marty N, Bocquet H, Andrieu S, Lodter JP, Chabanon G. Colonization of the oral cavity by Candida species: risk factors in long-term geriatric care. J Oral Sci. 2003;45(1):51-5. DOI: 10.2334/josnusd.45.51

6. Dongari-Bagtzoglou A, Dwivedi P, Ioannidou E, Shaqman M, Hull D, Burleson J. Oral Candida infection and colonization in solid organ transplant recipients. Oral Microbiol Immun. 2009;24(3):249-54. DOI: 10.1111/j.1399-302X.2009.00505.x

7. Budtz‐Jörgensen E, Stenderup A, Grabowski M. An epidemiologic study of yeasts in elderly denture wearers. Community Dent Oral Epidemiol. 1975;3(3):115-9. DOI: 10.1111/j.1600-0528.1975.tb00291.x

8. Shimizu C, Kuriyama T, Williams DW, Karasawa T, Inoue K, Nakagawa K, et al. Association of oral yeast carriage with specific host factors and altered mouth sensation. Oral Surg Oral Med Oral Patholo Oral Radiol Endod. 2008;105(4):445-51. DOI: 10.1016/j.tripleo.2007.11.030

9. Yano A, Abe A, Aizawa F, Yamada H, Minami K, Matsui M, et al. The effect of eating sea cucumber jelly on Candida load in the oral cavity of elderly individuals in a nursing home. Mar Drugs. 2013;11(12):4993-5007. DOI: 10.3390/md11124993

10. Cuéllar-Cruz M, López-Romero E, Villagómez-Castro JC, Ruiz-Baca E. Candida species: new insights into biofilm formation. Future Microbiol. 2012;7(6):755-71. DOI: 10.2217/fmb.12.48

11. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109. DOI: 10.1038/nrmicro2475

12. Harriott MM, Noverr MC. Importance of Candida – bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19(11):557-63. DOI: 10.1016/j.tim.2011.07.004

13. Mayer F, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 4: 119–128. 2013. DOI: 10.4161/viru.22913

14. Georgescu M, Vrinceanu D, Radulescu L, Tusaliu M, Martu C, Curutiu C, et al. Microbial biofilms and implantable hearing aids. Rom Biotech Lette. 2017;22(4):12681-6.

15. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012;2012.

16. Mathé L, Van Dijck P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 2013;59(4):251-64. DOI: 10.1007/s00294-013-0400-3

17. Baillie GS, Douglas LI. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. 1999;48(7):671-9. DOI: 10.1099/00222615-48-7-671

18. Ramage G, VandeWalle K, López-Ribot JL, Wickes BL. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol lett. 2002;214(1):95-100. DOI: 10.1111/j.1574-6968.2002.tb11330.x

19. Richard ML, Nobile CJ, Bruno VM, Mitchell AP. Candida albicans biofilm-defective mutants. Eukaryot Cell. 2005;4(8):1493-502. DOI: 10.1128/EC.4.8.1493-1502.2005

20. Bonhomme J, d’Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol. 2013;16(4):398-403. DOI: 10.1016/j.mib.2013.03.007

21. Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15(12):1150-5. DOI: 10.1016/j.cub.2005.05.047

22. Nobile CJ, Andes DR, Nett JE, Smith Jr FJ, Yue F, Phan Q-T, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7):e63. DOI: 10.1371/journal.ppat.0020063

23. Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell. 2006;5(10):1604-10. DOI: 10.1128/EC.00194-06

24. Ghannoum M, Elteen KA. Correlative relationship between proteinase production, adherence and pathogenicity of various strains of Candida albi-cans. J Med Vet Mycol. 1986;24(5):407-13. DOI: 10.1080/02681218680000621

25. Abu-Elteen KH, Elkarmi AZ, Hamad M. Characterization of phenotype-based pathogenic determinants of various Candida albicans strains in Jordan. Jap J Infect Dis. 2001;54(6):229-36.

26. Rosa EAR, Rached RN, Ignácio SA, Rosa RT, da Silva WJ, Yau JYY, et al. Phenotypic evaluation of the effect of anaerobiosis on some virulence attributes of Candida albicans. J Med Microbiol. 2008;57(10):1277-81. DOI: 10.1099/jmm.0.2008/001107-0

27. Pichová I, Pavlíčková L, Dostál J, Dolejší E, Hrušková‐ Heidingsfeldová O, Weber J, et al. Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae: inhibition with peptidomimetic inhibitors. Eur J Biochem. 2001;268(9):2669-77. DOI: 10.1046/j.1432-1327.2001.02152.x

28. Borg M, Rüchel R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun. 1988;56(3):626-31.

29. El‐Maghrabi E, Dixon D, Burnett J. Characterization of Candida albicans epidermolytic proteases and their role in yeast‐cell adherence to keratinocytes. Clin Exp Dermatol. 1990;15(3):183-91. DOI: 10.1111/j.1365-2230.1990.tb02069.x

30. Ollert M, Söhnchen R, Korting H, Ollert U, Bräutigam S, Bräutigam W. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun. 1993;61(11):4560-8.

31. Li F, Palecek SP. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell. 2003;2(6):1266-73. DOI: 10.1128/EC.2.6.1266-1273.2003

32. Hazen K, Glee P. Cell surface hydrophobicity and medically important fungi. Curr Top Med Mycol. 1995;6:1.

33. Hazen KC, Wu JG, Masuoka J. Comparison of the hydrophobic properties of Candida albicans and Candida dubliniensis. Infect Immun. 2001;69(2):779-86. DOI: 10.1128/IAI.69.2.779-786.2001

34. Telcian A, Mohammed DH, Chifiriuc M, Bleotu C, Holban A, Curutiu C, et al. Assessment of the anti-bio-film activity and biocompatibility of novel PE and PVC polymers. Rom Biotech Lett. 2017;22(5):12997.

35. Stan T, Teodor ED, Gatea F, Chifiriuc C, Lazăr V. Antioxidant and antifungal activity of Romanian propolis. Rom Biotech Lett. 2017;22(6):12116-13124.

36. Melo AS, Bizerra FC, Freymüller E, Arthington-Skaggs BA, Colombo AL. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med Mycol. 2011;49(3):253-62. DOI: 10.3109/13693786.2010.530032

37. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15(4):305-11. DOI: 10.1016/S1413-8670(11)70197-0

38. Konkel ME, Joens LA. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun. 1989;57(10):2984-90.

39. Zhang Y, Zhang S, Liu X, Wen H, Wang M. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol. 2010;51(1):114-8. DOI: 10.1111/j.1472-765X.2010.02867.x

40. Bruder-Nascimento A, Camargo CH, Mondelli AL, Sugizaki MF, Sadatsune T, Bagagli E. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Braz J Microbiol. 2014;45(4):1371-7. DOI: 10.1590/S1517-83822014000400030

41. Soll DR. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev. 2000;13(2):332-70. DOI: 10.1128/CMR.13.2.332

42. Samaranayake Y, Dassanayake R, Cheung B, Jayati-lake J, Yeung K, Yau J, et al. Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS. 2006;114(12):857-66. DOI: 10.1111/j.1600-0463.2006.apm_479.x

43. Cho T, Hamatake H, Kaminishi H, Hagihara Y, Watanabe K. The relationship between cyclic adenosine 3′, 5′-monophosphate and morphology in exponential phase Candida albicans. J Med Vet Mycol. 1992;30(1):35-42. DOI: 10.1080/02681219280000051

44. Ogasawara A, Odahara K, Toume M, Watanabe T, Mikami T, Matsumoto T. Change in the respiration system of Candida albicans in the lag and log growth phase. Biol Pharm Bull. 2006;29(3):448-50. DOI: 10.1248/bpb.29.448

45. Abad‐Zapatero C, Goldman R, Muchmore SW, Hutchins C, Stewart K, Navaza J, et al. Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci. 1996;5(4):640-52. DOI: 10.1002/pro.5560050408

46. O’Connor L, Lahiff S, Casey F, Glennon M, Cormican M, Maher M. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler™. Mol Cell Probes. 2005;19(3):153-62. DOI: 10.1016/j.mcp.2004.10.007

47. Cheng G, Wozniak K, Wallig MA, Fidel PL, Trupin SR, Hoyer LL. Comparison between Candida albi-cans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun. 2005;73(3):1656-63. DOI: 10.1128/IAI.73.3.1656-1663.2005

48. Wang Y. Fungal adenylyl cyclase acts as a signal sensor and integrator and plays a central role in interaction with bacteria. PLoS Pathog. 2013;9(10):e1003612. DOI: 10.1371/journal.ppat.1003612

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information

IMPACT FACTOR 2018: 0,800
5-year IMPACT FACTOR: 0,655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 22
PDF Downloads 96 96 11