Could fibrinogen and hsCRP be useful for assessing personal risk in workers exposed to a mixture of ultrafine particles and organic solvents?

Septimiu Voidazan 1 , Horatiu Moldovan 2 , Adina Huţanu 3 , Doina Giurgiu 4 , Stelian Morariu 5 , Lode Godderis 6 , 7 , and Radu-Corneliu Duca 8
  • 1 Department of Epidemiology, University of Medicine and Pharmacy of Tîrgu Mureş, , Tîrgu Mureş, Romania
  • 2 University of Medicine and Pharmacy of Tîrgu Mureş, , Tîrgu Mureş, Romania
  • 3 Department of Laboratory Medicine, CCAMF, University of Medicine and Pharmacy of Tîrgu Mureș, , Tîrgu Mureș, Romania
  • 4 Department of Occupational Medicine, University “Lucian Blaga” Sibiu, , Sibiu, Romania
  • 5 Department of Occupational Medicine, West University “Vasile Goldis” Arad, , Arad, Romania
  • 6 Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU , Leuven, Belgium
  • 7 IDEWE, External service for prevention and protection at work, , Heverlee, Belgium
  • 8 Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven (KU , Leuven, Belgium


Purpose: Our study focuses on elucidating if two common inflammatory biomarkers, easily performed in any laboratory - high-sensitivity C-reactive protein (hsCRP), as well as fibrinogen - could be used to assess the personal health risk of workers exposed to a complex occupational exposure to ultrafine particles (UFP) and a mixture of organic solvents. Methods: To assess the inflammatory response on the body, laboratory determinations were performed by testing the serum levels of hsCRP and fibrinogen, in exposed and unexposed groups. Results: There are no statistically significant differences for hsCRPs (p-0.25), medians were similar in groups. The mean values of fibrinogen in the three groups were: in the workers group (1st group): 346.2 mg/dl, in the office staff group (2nd group): 328.7 mg/dl, and in the control group (3rd group): 284.8 mg/dl, with significant differences between 1st group vs 3rd group and between 2nd group vs 3rd group (p-0.002). UFP levels differ between the groups, as follows: 1st group were exposed to the highest levels, ranging from 48349 to 3404000 part/cm3; 2nd group, ranging from 17371 to 40595 part/cm3; and 3rd group, ranging from 213 to 16255 part/cm3. Conclusions: Our study demonstrates that fibrinogen is a useful inflammatory biomarker for exposure to a mixture of UFP and organic solvents. On the other hand, hsCRP is not a useful inflammatory biomarker in occupational exposure to UFP and organic solvents. Further studies are needed to demonstrate the extent to which fibrinogen is more or less influenced by organic solvents or UFP alone.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bekker C, Brouwer DH, Tielemans E, Pronk A. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg.2013;57(3):314-27.

  • 2. Bahadar H. Mostafalou S, Abdollahi M. Current understandings and perspectives on non-Cancer health effects of benzene: A global concern. Toxicol Appl Pharmacol. 2014;276(2):83-94. DOI: 10.1016/j.taap.2014.02.012

  • 3. Baker EL. A Review of Recent Research on Health Effects of Human Occupational Exposure to Organic Solvents. J Occup Environ Med. 1994;36(10):1079-92. DOI: 10.1097/00043764-199410000-00010

  • 4. Mohammadi S, Mehrparvar A, Labbafinejad Y, Attarchi MS. The effect of exposure to a mixture of organic solvents on liver enzymes in an auto manufacturing plant. J Public Health. 2010;18(6):553-557. DOI: 10.1007/s10389-010-0340-z

  • 5. Mohammadi S, Labbafinejad Y, Attarchi M. Combined Effects of Ototoxic Solvents and Noise on Hearing in Automobile Plant Workers in Iran. Arh Hig Rada Toksikol. 2010;61(3):267-274. DOI: 10.2478/10004-1254-61-2010-2013

  • 6. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126. DOI: 10.4103/0973-7847.70902

  • 7. Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol. 2010;22:679-94. DOI: 10.3109/08958371003758823

  • 8. Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, et al. Nanotoxicology - a pathologist’s perspective. Toxicol Pathol. 2011;39:301-24. DOI: 10.1177/0192623310390705

  • 9. Hui-Yi Liao, Yu-Teh Chung, Ching-Huang Lai, Shu-Li Wang, Hung-Che Chiang et al. Six-month follow-up study of health markers of nanomaterials among. Nanotoxicology. 2013;8:100-10. DOI: 10.3109/17435390.2013.858793

  • 10. Liou S-H, Tsai CSJ, Pelclova D, Schubauer-Berigan MK, Schulte PA. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res Journal. 2015;17(10):413. DOI: 10.1007/s11051-015-3219-7

  • 11. Vogel CFA, Sciullo E, Wong P, Kuzmicky P, Kado N, Matsumura F. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect. 2005;113:1536-41. DOI: 10.1289/ehp.8094

  • 12. Li Y, Rittenhouse-Olson K, L.Scheider W, Mu L. Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies, Rev Environ Health. 2012;27(2-3):133-49. DOI: 10.1515/reveh-2012-0012

  • 13. Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ. Health Perspect. 2008;116:898-906. DOI: 10.1289/ehp.11189

  • 14. Ohlson CG, Berg P, Bryngelsson IL, Elihn K, Ngo Y, Westberg H, et al. Inflammatory markers and exposure to occupational air pollutants. Inhal. Toxicol. 2010;22:1083-1090. DOI: 10.3109/08958378.2010.520356

  • 15. Niwa Y, Hiura Y, Sawamura H, Iwai N, Inhalation exposure to carbon black induces inflammatory response in rats. Circ. J. 2008;72:144-9. DOI: 10.1253/circj.72.144

  • 16. Peters A, Greven S, Heid I. M, Baldari F, Breitner S, Bellander T. et al. Fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med. 2009;179:484-91. DOI: 10.1164/rccm.200805-751OC

  • 17. Marra J, Voetz M, Kiesling HJ. Monitor for detecting and assessing exposure to airborne nanoparticles. J Nanopart Res. 2010;12:21-37. DOI: 10.1007/s11051-009-9695-x

  • 18. Creta M, Poels K, Thoelen L, A Method to Quantitatively Assess Dermal Exposure to Volatile Organic Compounds, Annals of Work Exposures and Health. 2017;61(8):975-85. DOI: 10.1093/annweh/wxx054

  • 19. Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol. 1957;17:237-46. DOI: 10.1159/000205234

  • 20. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(Suppl 4):523-27. DOI: 10.1289/ehp.01109s4523

  • 21. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11-45. DOI: 10.1186/1743-8977-3-11

  • 22. Brouwer D. Exposure to manufactured nanoparticles in different workplaces. Toxicology. 2010;269:120-7. DOI: 10.1016/j.tox.2009.11.017

  • 23. Frampton MW. Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol. 2007;19:75-9. DOI: 10.1080/08958370701495071

  • 24. Quan C, Sun Q, Lippmann M, Chen LC. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol. 2010;22:738-53. DOI: 10.3109/08958371003728057

  • 25. Peters A, Breitner S, Cyrys J, Stolzel M, Pitz M, Wolke G, et al. The influence of improved air quality on mortality risks in Erfurt, Germany. Res Rep Health Eff Inst. 2009;137:5-77.

  • 26. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34:559-67. DOI: 10.1183/09031936.00178308

  • 27. Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Investig. 2003;111:1805-12. DOI: 10.1172/JCI200318921

  • 28. Simion M, Ruta Lavinia L, Kleps I, Miu M. Study of HS-CRP immobilization on nanostructured silicon. Materials Science and Engineering B, Solid-State Materials for Advanced Technology. 2010;169(1-3):67-72. DOI: 10.1016/j.mseb.2009.12.050

  • 29. Zhang YX, Cliff WJ, Schoefl GI, Higgins G. Coronary C-reactive protein distribution: Its relation to development of atherosclerosis. Atherosclerosis. 1999;145:375-9. DOI: 10.1016/S0021-9150(99)00105-7

  • 30. McBride JD., Cooper MA. A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing. Nanobiotechnology. 2008;6:1-8. DOI: 10.1186/1477-3155-6-5

  • 31. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56(1):131-42. DOI: 10.1007/s12026-013-8384-0

  • 32. Pilar C, Rosana S.V, Jonathan P, González F. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance, Biosens Bioelectron. 2015;74:376-83. DOI: 10.1016/j.bios.2015.05.070

  • 33. Fischbach F. Blood Studies. Hematology and Coagulation, A Manual of Laboratory and Diagnostic Test 8th ed, Philadelphia, 2009;177-8.

  • 34. Bergamaschi E. Human Biomonitoring of Engineered Nanoparticles: An Appraisal of Critical Issues and Potential Biomarkers. J Nanomater. 2012;2012:1-12. DOI: 10.1155/2012/564121

  • 35. Liou SH, Tsou TC, Wang SL, Li LA, Chiang HC, Li WF, et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res Journal. 2012;14:878-82. DOI: 10.1007/s11051-012-0878-5

  • 36. Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNeeW, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112:3930-6. DOI: 10.1161/CIRCULATIONAHA.105.588962

  • 37. Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29:3043-51. DOI: 10.1093/eurheartj/ehn464

  • 38. Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol. 2009;6:24-42. DOI: 10.1186/1743-8977-6-24

  • 39. Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52:419-28.

  • 40. Sutton RH, Hobman B. The value of plasma fibrinogen estimations in cattle: A comparison with total leucocyte and neutrophil counts. N. Z. Vet J. 1975;23(3):21-27 DOI: 10.1080/00480169.1975.34186

  • 41. Pelclova D, Fenclova Z, Syslova K, Vlckova S, Lebedova J, Pecha O. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind Health. 2011;49(6):746-54. DOI: 10.2486/indhealth.MS1237

  • 42. Pelclova D, Navratil T, Fenclova Z, Vlckova S, Kupka K, Urban P, et al. Increased oxidative/nitrosative stress markers measured non- invasively in patients with high 2,3,7,8-tetrachloro-dibenzo-p-dioxin plasma level. Neuro Endocrinol Lett. 2011;32Suppl 1:71-6.

  • 43. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K. et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res. 2016;10(1):016004. DOI: 10.1088/1752-7155/10/1/016004

  • 44. Fogarasi E, Croitoru MD, Fülöp I, Nemes-Nagy E, Tripon RG, Simon-Szabo Z, et al. Malondialdehyde levels can be measured in biological samples by using a fast HPLC method with visible detection. Rev Romana Med Lab. 2016;24(3):319-26. DOI: 10.1515/rrlm- 2016-0029


Journal + Issues