Associations of pathogenic mutations responsible for breast cancer risk with histology and immunohistochemistry in Romanian population

Open access


Introduction: Breast cancer is the most common cancer in women worldwide, and Romania makes no exception from this trend. Genetic screening for Hereditary Breast and Ovarian Cancer began to be used on a larger scale after the introduction of Next Generation Sequencing. The aim of this study was to assess the association of deleterious mutations responsible for breast cancer with histopathological and immunohistochemical prognostic factors and to identify some genetic variants in the BRCA1 and BRCA2 genes. Method: 80 patients with breast cancer and negative genetic test or pathogenic variants on BRCA1/2, TP53, PALB2, CHEK2, ATM genes were included. All the cases had a prior histological diagnosis and complete immunohistochemical features. The genetic testing was conducted through a multigene panel. Results: 65% of patients had a deleterious mutation on BRCA genes. In 97.5% of cases the histology was invasive ductal carcinoma. Significant differences were identified between BRCA1 group and negative mutation group regarding estrogen receptor (ER) (p=0.0051), progesterone receptor (PR) (p=0.0004) and Ki67 (p=0.001). Seven breast cancer patients had BRCA1 c.3607C>T variant, which was statistically significantly associated with triple- negative breast cancer (p <0.0001). Of the 7 cases diagnosed with BRCA 2 mutations we identified the c.8755-1G>A variant in 3 cases and the c.9371A>T variant in 3 cases. Discussion and conclusion: Our study confirmed the association of BRCA1 mutations with negative ER, PR or triple negative breast cancer (TNBC). Description of BRCA1 c.3607C>T mutation for the first time in Romanian population and its association with TNBC will need further investigation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ferlay J Steliarova-Foucher E Lortet-Tieulent J Rosso S Coebergh JW Comber H et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013; 49(6):1374-403. DOI: 10.1016/j.ejca.2012.12.027

  • 2. Hall JM Lee MK Newman B Morrow JE Anderson LA Huey B et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990; 250(4988):1684-9. DOI: 10.1126/science.2270482

  • 3. Wooster R Neuhausen SL Mangion J Quirk Y Ford D Collins N et al. Localization of a breast cancer susceptibility gene BRCA2 to chromosome 13q12-13. Science. 1994; 265(5181):2088-90. DOI: 10.1126/science.8091231

  • 4. Kurian AW Kingham KE Ford JM. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr Opin Obstet Gynecol. 2015; 27(1):23-33. DOI: 10.1097/GCO.0000000000000141

  • 5. Hilbers FS Vreeswijk MP van Asperen CJ Devilee P. The impact of next generation sequencing on the analysis of breast cancer susceptibility: a role for extremely rare genetic variation? Clin Genet. 2013; 84(5):407-14. DOI: 10.1111/cge.12256

  • 6. Sharma P Klemp JR Kimler BF Mahnken JD Geier LJ Khan QJ et al. Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing. Breast Cancer Res Treat. 2014; 145(3):707-14. DOI: 10.1007/s10549-014-2980-0

  • 7. Mavaddat N Peock S Frost D Ellis S Platte R Fineberg E et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013; 105(11):812-22. DOI: 10.1093/jnci/djt095

  • 8. Zaky SS Lund M May KA Godette KD Beitler JJ Holmes LR et al. The negative effect of triple-negative breast cancer on outcome after breast-conserving therapy. Ann Surg Oncol. 2011; 18(10):2858-65. DOI: 10.1245/s10434-011-1669-4

  • 9. Domagala P Jakubowska A Jaworska-Bieniek K Kaczmarek K Durda K Kurlapska A et al. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers. PLoS One. 2015; 10(6):e0130393. DOI: 10.1371/journal.pone.0130393

  • 10. Morris JL Gordon OK. Positive results : making the best decisions when you’re at high risk for breast or ovarian cancer. Amherst N.Y.: Prometheus Books; 2010. 395 p. p.

  • 11. Daly MB Pilarski R Axilbund JE Berry M Buys SS Crawford B et al. Genetic/Familial High-Risk Assessment: Breast and Ovarian Version 2.2015. J Natl Compr Canc Netw. 2016; 14(2):153-62. DOI: 10.6004/jnccn.2016.0018

  • 12. Chennagiri N White EJ Frieden A Lopez E Lieber DS Nikiforov A et al. Orthogonal NGS for High Throughput Clinical Diagnostics. Sci Rep. 2016; 6:24650. DOI: 10.1038/srep24650

  • 13. Unger MA Nathanson KL Calzone K Antin-Ozerkis D Shih HA Martin AM et al. Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing. Am J Hum Genet. 2000; 67(4):841-50. DOI: 10.1086/303076

  • 14. Weissgerber TL Milic NM Winham SJ Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015; 13(4):e1002128. DOI: 10.1371/journal.pbio.1002128

  • 15. Kwong A Chen JW Shin VY. A new paradigm of genetic testing for hereditary breast/ovarian cancers. Hong Kong Med J. 2016; 22(2):171-7.

  • 16. Weischer M Bojesen SE Tybjaerg-Hansen A Axelsson CK Nordestgaard BG. Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007; 25(1):57-63. DOI: 10.1200/JCO.2005.05.5160

  • 17. Domagala P Huzarski T Lubinski J Gugala K Domagala W. Immunophenotypic predictive profiling of BRCA1-associated breast cancer. Virchows Arch. 2011; 458(1):55-64. DOI: 10.1007/s00428-010-0988-3

  • 18. Negura L Uhrhammer N Negura A Artenie V Carasevici E Bignon YJ. Complete BRCA mutation screening in breast and ovarian cancer predisposition families from a North-Eastern Romanian population. Fam Cancer. 2010; 9(4):519-23. DOI: 10.1007/s10689-010-9361-6

  • 19. Burcos T Cimponeriu D Ion DA Spandole S Apostol P Toma M et al. Analysis of several BRCA1 and BRCA2 mutations in a hospital-based series of unselected breast cancer cases. Chirurgia (Bucur). 2013;108(4):468-72.

  • 20. Walsh T Casadei S Lee MK Pennil CC Nord AS Thornton AM et al. Mutations in 12 genes for inherited ovarian fallopian tube and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011; 108(44):18032-7. DOI: 10.1073/pnas.1115052108

  • 21. Machackova E Foretova L Lukesova M Vasickova P Navratilova M Coene I et al. Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer. BMC Cancer. 2008; 8:140. DOI: 10.1186/1471-2407-8-140

  • 22. Wojcik P Jasiowka M Strycharz E Sobol M Hodorowicz- Zaniewska D Skotnicki P et al. Recurrent mutations of BRCA1 BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland. Hered Cancer Clin Pract. 2016; 14:5. DOI: 10.1186/s13053-016-0046-5

  • 23. Cybulski C Huzarski T Byrski T Gronwald J Debniak T Jakubowska A et al. Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet. 2009; 75(1):72-8. DOI: 10.1111/j.1399-0004.2008.01111.x

  • 24. Liu C Wang Y Wang QS Wang YJ. The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2012; 13(4):1355-60. DOI: 10.7314/APJCP.2012.13.4.1355

  • 25. Huszno J Budryk M Kolosza Z Tecza K Pamula Pilat J Nowara E et al. A Comparison between CHEK2*1100delC/I157T Mutation Carrier and Noncarrier Breast Cancer Patients: A Clinicopathological Analysis. Oncology. 2016; 90(4):193-8. DOI: 10.1159/000444326

  • 26. Kriege M Hollestelle A Jager A Huijts PE Berns EM Sieuwerts AM et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. Br J Cancer. 2014; 111(5):1004-13. DOI: 10.1038/bjc.2014.306

  • 27. Cybulski C Kluzniak W Huzarski T Wokolorczyk D Kashyap A Jakubowska A et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol. 2015; 16(6):638-44. DOI: 10.1016/S1470-2045(15)70142-7

  • 28. Heikkinen T Karkkainen H Aaltonen K Milne RL Heikkila P Aittomaki K et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res. 2009; 15(9):3214-22. DOI: 10.1158/1078-0432.CCR-08-3128

  • 29. Couch FJ Hart SN Sharma P Toland AE Wang X Miron P et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015; 33(4):304-11. DOI: 10.1200/JCO.2014.57.1414

  • 30. Wilson JR Bateman AC Hanson H An Q Evans G Rahman N et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations.J Med Genet. 2010; 47(11):771-4. DOI: 10.1136/jmg.2010.078113

  • 31. Bougeard G Renaux-Petel M Flaman JM Charbonnier C Fermey P Belotti M et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015; 33(21):2345-52. DOI: 10.1200/JCO.2014.59.5728

  • 32. Stagni V Manni I Oropallo V Mottolese M Di Benedetto A Piaggio G et al. ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun. 2015;6:6886. DOI: 10.1038/ncomms7886

  • 33. Eccles DM Li N Handwerker R Maishman T Copson ER Durcan LT et al. Genetic testing in a cohort of young patients with HER2-amplified breast cancer. Ann Oncol. 2016; 27(3):467-73. DOI: 10.1093/annonc/mdv592

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.800
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 461 299 12
PDF Downloads 211 143 6