Beta-lactam and quinolone resistance markers in uropathogenic strains isolated from renal transplant recipients

Open access

Abstract

Our objectives were to investigate the extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CR) genetic determinants and to assess the association between ESBL production and quinolone resistance in bacterial strains isolated from renal transplant recipients with urinary tract infections. Material and methods: A number of 30 isolates were recovered from urine specimens of patients with renal transplant from October 2015 to March 2016. The isolates were analyzed for ESBL production using double disc synergy test and for CR production by the Hodge test. Phenotypically confirmed isolates were screened by PCR for the identification of ESBL, CR and fluoroquinolone resistance genes. Results: The 30 clinical bacterial strains isolated from urinary tract infections in renal transplant recipients were identified as Klebsiella pneumoniae (17), Pseudomonas aeruginosa (7), Morganella morganii (2), Escherichia coli (2), Edwardsiella tarda (1) and Enterobacter cloacae (1). Out of them, 22 isolates were ESBL producers and 20 multi-drug resistant (MDR) (i.e., 13 K. pneumoniae and 7 P. aeruginosa strains). More than half of the ESBL clinical strains (14/22, 63.63%) revealed at least one ESBL gene, the most frequent being blaCTX-M type (18/22, 81.81%), either alone (4/22, 18.18%) or in combination with another ESBL gene (17/22, 77.27%), followed by blaTEM (13/22, 59.09%). The blaOXA-48 was present in 10 isolates (33.33%). The most frequent association of ESBLs and CR genes (5/14, 35.71%) was revealed by blaCTX-M- blaTEM - blaOXA-48, encountered particularly among K. pneumoniae isolates (4/17, 23.52%). The qnrB gene was identified in five strains, i.e. one P. aeruginosa ESBL isolate (expressing the blaCTX-M gene) and four K. pneumoniae ESBL isolates (harboring the blaCTX-M - blaTEM genes combination). Conclusions: The uropathogenic strains isolated from renal transplant recipients exhibited high rates of MDR and beta-lactam resistance. The selective pressure exerted by quinolones could enable uropathogenic bacteria to acquire resistance to this class of antibiotics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kritikos A Manuel O. Bloodstream infections after solid-organ transplantation. Virulence. 2016;7(3):329-40. DOI: 10.1080/21505594.2016.1139279

  • 2. Parasuraman R Julian K the AST Infectious Diseases Community of Practice. Urinary Tract Infections in Solid Organ Transplantation. Am J Transplant. 2013;13:327-36. DOI: 10.1111/ajt.12124

  • 3. Freire MP Antonopoulos IM Piovesan AC Moura ML de Paula FJ Spadão F et al. Amikacin prophylaxis and risk factors for surgical site infection after kidney transplantation. Transplantation. 2015 Mar;99(3):521-7. DOI: 10.1097/TP.0000000000000381

  • 4. Vidal E Torre-Cisneros J Blanes M Montejo M Cervera C Aguado JM et al. Spanish Network for Research in Infectious Diseases (REIPI). Bacterial urinary tract infection after solid organ transplantation in the RESITRA cohort. Transpl Infect Dis. 2012 Dec;14(6):595-603.DOI: 10.1111/j.1399-3062.2012.00744.x

  • 5. Pinheiro HS Mituiassu AM Carminatti M Braga AM Bastos MG. Urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in kidney transplant patients. Transplant Proc. 2010;42(2):486-7. DOI: 10.1016/j.transproceed. 2010.02.002

  • 6. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Wayne PA: Clinical and Laboratory Standards Institute; 2015.

  • 7. Efrekar RF Hosseini-Mazinani SM Ghandili S Hamraz M Zamani S. PCR detection of plasmid mediated TEM SHV and AmpC β-lactamases in community and nosocomial urinary isolates of Escherichia coli. Iranian J Biotech. 2005;3(1):48-54.

  • 8. Naas T Philippon L Poirel L Ronco E Nordmann P. An SHV-derived extended spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43:1281-4.

  • 9. Israil A Chifiriuc C Palade G Cotar A. Clinical and bacteriological aspects of bacterial infections associated to abdominal surgical emergencies. Ars Docenti Publ. House. 2013:150.

  • 10. Poirel L Walsh TR Cuvillier V Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23. DOI: 10.1016/j.diagmicrobio.2010.12.002

  • 11. Jiang X Ni Y Jiang Y Yuan F Han L Li M. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J Clin Microbiol. 2005;43:826-31. DOI: 10.1128/JCM.43.2.826-831.2005

  • 12. Agnello M Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS ONE. 2012;7(8):e42973. DOI: 10.1371/journal.pone.0042973

  • 13. Cattoir V Poirel L Rotimi V Soussy CJ Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2): 394-397. DOI: 10.1093/jac/dkm204

  • 14. Chuang P Parikh CR Langone A. Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin Transplant. 2005;19: 230-5. DOI: 10.1111/j.1399-0012.2005.00327.x

  • 15. de Souza RM Olsburgh J. Urinary tract infection in the renal transplant patient. Nat Clin Pract Nephrol. 2008;4:252-64. DOI: 10.1038/ncpneph0781

  • 16. Naber KG Bergman B Bishop MC Bjerklund-Johansen TE Botto H Lobel B et al. Urinary Tract Infection (UTI) Working Group of the Health Care Office (HCO) of the European Association of Urology (EAU). EAU guidelines for the management of urinary and male genital tract infections. Urinary Tract Infection (UTI)Working Group of the Health Care Office (HCO) of the European Association of Urology (EAU). EurUrol. 2001 Nov;40(5):576-88. DOI: 10.1159/000049840

  • 17. Fox BC Sollinger HW Belzer FO Maki DG. A prospective randomized double-blind study of trimethoprim- sulfamethoxazole for prophylaxis of infection in renal transplantation: clinical efficacy absorption of trimethoprim-sulfamethoxazole effects on the microflora and the cost-benefit of prophylaxis. Am J Med. 1990 Sep;89(3):255-74. DOI: 10.1016/0002-9343(90)90337-D

  • 18. Säemann M Hörl WH. Review Urinary tract infection in renal transplant recipients. Eur J Clin Invest. 2008;38 Suppl 2:58-65. DOI: 10.1111/j.1365-2362.2008.02014.x

  • 19. Gavriliu L Benea O Benea S. Antimicrobial resistance temporal trend of Klebsiella pneumoniae isolated from blood . Journal of Medicine and Life. 2016; 9(4):419-23.

  • 20. Lautenbach E Patel JB Bilker WB Edelstein PH Fishman NO Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162-71. DOI: 10.1086/319757

  • 21. Linares L Cervera C Cofán F Lizaso D Marco F Ricart MJ et al. Risk factors for infection with extended- spectrum and AmpC beta-lactamase-producing gram-negative rods in renal transplantation. Am J Transplant. 2008 May;8(5):1000-5. DOI: 10.1111/j.1600-6143.2008.02197.x

  • 22. Valera B Gentil MA Cabello V Fijo J Cordero E Cisneros JM. Epidemiology of urinary infections in renal transplant recipients. Transplant Proc. 2006;38(8):2414-5. DOI: 10.1016/j.transproceed.2006.08.018

  • 23. Johnson JR Johnston B Clabots C Kuskowski MA Pendyala S DebRoy C et al. Escherichia coli Sequence Type ST131 as an Emerging Fluoroquinolone-Resistant Uropathogen among Renal Transplant Recipients. Antimicrobial Antimicrob Agents Chemother. 2010;54(1):546-50.DOI: 10.1128/AAC.01089-09

  • 24. Choi SU Lee JH Oh CK Shin GT Kim H Kim SJ Kim SI. Clinical significance of prophylactic antibiotics in renal transplantation.Transplant Proc 2013;45(4):1392-5. DOI: 10.1016/j.transproceed.2012.10.059

  • 25. Kader AA Kumar A. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital. Ann Saudi Med. 2005;25(3):239-42.

  • 26. Székely E Damjanova I Jánvári L Vas KE Molnar S Bilca DV Löriczi LK Tóth A. First description of bla(NDM-1) bla(OXA-48) bla(OXA-181) producing Enterobacteriaceae strains in Romania. Int J Med Microbiol. 2013;303(8):697-700. DOI: 10.1016/j. ijmm.2013.10.001

  • 27. Czobor I Gheorghe I Banu O Velican A Lazăr V Mihăescu G Chifiriuc M.C. ESBL genes in Multi Drug Resistant Gram negative strains isolated in a one year survey from an Intensive Care Unit in Bucharest Romania. Roumanian Biotechnological Letters. 2014;19(4):9553-6.

  • 28. Mereuță AI Bădescu AC Dorneanu OS Iancu LS Tuchiluș CG. Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iași România. Rev Romana Med Lab. 2013; 21(4): 389-396. DOI: 10.2478/ rrlm-2013-0035

  • 29. Bodro M Sanclemente G Lipperheide I Allali M Marco F Bosch J et al. Impact of antibiotic resistance on the development of recurrent and relapsing symptomatic urinary tract infection in kidney recipients. Am J Transplant. 2015 Apr;15(4):1021-7. DOI: 10.1111/ ajt.13075

  • 30. Vahaboglu H Oztürk R Aygün G Coşkunkan F Yaman A Kaygusuz A et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother. 1997;41(10):2265-9.

  • 31. Girlich D Naas T Leelaporn A Poirel L Fennewald M Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis. 2002; 34(5):603-11. DOI: 10.1086/338786

  • 32. Bouchillon S Hoban DJ Badal R Hawser S. Fluoroquinolone Resistance Among Gram-Negative Urinary Tract Pathogens: Global Smart Program Results 2009-2010. Open Microbiol J. 2012;6:74-78. DOI: 10.2174/1874285801206010074

  • 33. Azap Ö Togan TYesilkaya A Arslan H Haberal M. Antimicrobial susceptibilities of uropathogen Escherichia coli in renal transplant recipients: dramatic increase in ciprofloxacin resistance.Transplant Proc. 2013;45(3):956 - 957. DOI: 10.1016/j.transproceed. 2013.03.006

  • 34. Lagacé-Wiens PR Nichol KA Nicolle LE DeCorby MR McCracken M Alfa MJ Zhanel GG. ESBL genotypes in fluoroquinolone-resistant and fluoroquinolone- susceptible ESBL-producing Escherichia coli urinary isolates in Manitoba. Can J Infect Dis Med Microbiol. 2007;18(2):133-7. DOI: 10.1155/2007/848194

  • 35. Jacoby GA Sutton L. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991;35(1):164-9. DOI: 10.1128/AAC.35.1.164

  • 36. Usein CR Tatu-Chiţoiu D Nica M Ciontea SA Palade AM Condei M Damian M. Characteristics of Romanian fluoroquinolone-resistant human clinical Escherichia coli isolates. Roum Arch Microbiol Immunol. 2008;67(1-2):23-9.

  • 37. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf.

  • 38. www.ecdc.europa.eu. Antimicrobial resistance surveillancein Europe 2015.

  • 39. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.800
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 117 1
PDF Downloads 161 71 1