Comparison of virulence factors and antibiotic resistance of Pseudomonas aeruginosa strains isolated from patients with and without cystic fibrosis

Salih Macin 1 , Meral Akarca 2 , Burcin Sener 3 ,  and Yakut Akyon 3
  • 1 Selcuk University Faculty of Medicine, Department of Medical Microbiology, , Konya, Turkey
  • 2 Golbası State Hospital, Department of Medical Microbiology, , Ankara, Turkey
  • 3 Hacettepe University Faculty of Medicine, Department of Medical Microbiology, , Ankara, Turkey


Its rising incidence, virulence factors and antibiotic resistance rate makes it difficult to treat Pseudomonas aeruginosa infections. The aim of this study was to compare virulence factors and antibiotic resistance of P. aeruginosa isolates from cystic fibrosis (CF) and other lower respiratory tract infections. Isolates from patients (n=125) were divided into two groups. The isolates in the first group were from CF patients (n=64). And in the other group isolates were from lower respiratory tract samples, from patients that did not have CF (n=61). The antibiotic susceptibility tests were done by using disc diffusion method. As phenotypic tests; DNase, protease, elastase, hemolysis, and motility test were performed. The mucoid form of P. aeruginosa was detected in 29.7% of CF patients’ isolates, whereas in the other group (non-CF) this rate was 9.8% (p=0.011). Motility in the CF patients’ isolates was lower (84.4%) then the other group (96.7%). The presence of DNase was significantly low in CF patients’ isolates when compared to the other group (p=0.009). When the antibiotic resistance was compared; ceftazidime, imipenem and meropenem and piperacillin resistance was found significantly low in CF patients compared to isolates from the other group (p≤0.05). Information about virulence factor patterns and antibiotic resistance of P. aeruginosa isolates from patients with cystic fibrosis and the patients without cystic fibrosis can prevent the unnecessary usage of antibiotics and lead the way to new approaches in treatment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Speert DP, Campbell ME, Davidson AG, Wong LT. Pseudomonas aeruginosa colonization of the gastrointestinal tract in patients with cystic fibrosis. J Infect Dis. 1993 Jan;167(1):226-9. DOI: 10.1093/infdis/167.1.226

  • 2. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998 Oct-Dec;4(4):551-60. DOI: 10.3201/eid0404.980405

  • 3. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis. 2002 Mar;34(5):634-40. DOI: 10.1086/338782

  • 4. Matroș L, Krausz TL, Pandrea SL, Ciontea MI, Chiorean E, Pepelea LS, et al. Phenotypic and genotypic study of carbapenem-resistant Pseudomonas aeruginosa strains isolated from hospitalized patients. Rev Romana Med Lab. 2016;24(2):201-11. DOI:10.1515/rrlm-2016-0021

  • 5. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539-74.

  • 6. Mahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun. 1994 Feb;62(2):596-605.

  • 7. Winstanley C, O’Brien S, Brockhurst M A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016 May;24(5):327-37. DOI: 10.1016/j.tim.2016.01.008

  • 8. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement (M100-S25). CLSI, Wayne, PA, USA, 2015.

  • 9. Petermann SR, Doetkott C, Rust L. Elastase deficiency phenotype of Pseudomonas aeruginosa canine otitis externa isolates. Clin Diagn Lab Immunol. 2001 May;8(3):632-6. DOI: 10.1128/CDLI.8.3.632-636.2001

  • 10. Burke V, Robinson JO, Richardson CJL, Bundell CS. Longitudinal studies of Virulence Factors of Pseudomonas aeruginosa in Cystic Fibrosis. Pathology 1991 Apr;23(2):145-8. DOI: 10.3109/00313029109060814

  • 11. Høiby N, Frederiksen B, Pressler T. Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros. 2005 Aug;4(2):49-54. DOI: 10.1016/j.jcf.2005.05.018

  • 12. Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B Biointerfaces. 2016 Jul;143(1):168-76. DOI: 10.1016/j.colsurfb.2016.03.040

  • 13. Çıragil P, Söyletir G. Alginate, elastase and alkaline protease product,on of Pseudomonas aeruginosa strains isolated from various body sites. Mikrobiyol Bul. 2004 Oct;38(4):341-7.

  • 14. Woods DE, Schaffer MS, Rabin HR, Campbell GD, Sokol PA. Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol. 1986 Aug;24(2):260-4.

  • 15. Hedberg M, Miller JK,Tompkins VN. Elastase Activity of Pseudomonas Aeruginosa Isolates from Hospital Patients. Tech Bull Regist Med Technol. 1969 Oct; 39(10):233-5.

  • 16. Sousa AM, Pereira MO. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs-a review. Pathogens. 2014 Aug;3(3):680-703. DOI: 10.3390/pathogens3030680

  • 17. Amitani R, Wilson R, Rutman A, Read R, Ward C, Burnett D, et al. Effects of Human Neutrophil Elastase and Pseudomonas aeruginosa Proteinases on Human Respiratory Epithelium. Am J Respir Cell Mol Biol. 1991 Jan;4(1):26-32. DOI: 10.1165/ajrcmb/4.1.26

  • 18. Faraji F, Mahzounieh M, Ebrahimi A, Fallah F, Teymournejad O, Lajevardi B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microbial Pathogenesis. 2016 Oct;99:1-4. DOI: 10.1016/j.micpath.2016.07.013

  • 19. Breidenstein EB, de la Fuente-Nú-ez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011 Aug;19(8):419-26. DOI: 10.1016/j.tim.2011.04.005

  • 20. Ciofu O. Pseudomonas aeruginosa chromosomal beta- lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl. 2003;116:1-47.

  • 21. Manno G, Cruciani M, Romano L. Scapolan S, Mentasti M, Lorini R, et al. Antimicrobial use and Pseudomonas aeruginosa susceptibility profile in a cystic fibrosis centre. Int J Antimicrob Agents. 2005 Mar;25(3):193-7. DOI: 10.1016/j.ijantimicag.2004.11.009

  • 22. Smıth DJ, Ramsay K, Yerkovıch ST, Reıd DW, Waınwrıght CE, Grımwood K, et al. Pseudomonas aeruginosa antibiotic resistance in Australian cystic fibrosis centres. Respirology. 2016 Feb;21(2):329-37. DOI: 10.1111/resp.12714

  • 23. Bosso JA, Mauldin PD, Steed LL. Consequences of Combining Cystic Fibrosis and Non-Cystic Fibrosis Derived Pseudomonas aeruginosa Antibiotic Susceptibility Results in Hospital Antibiograms. Ann Pharmacother. 2006 Nov;40(11):1946-9. DOI: 10.1345/aph.1H377

  • 24. Çıragil P, Söyletir G, Şener B, Erturan Z. Susceptibilitiy of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis and Other Lower Respiratory Tract Infections Against Various Antibiotics. Turk Mikrobiyol Cem Derg. 2002;32(3):197-202.

  • 25. Rao P, McCaughan J, McCalmont M, Goldsmith CE, Hall V, Millar BC, et al. Comparison of antibiotic susceptibility patterns in Pseudomonas aeruginosa isolated from adult patients with cystic fibrosis (CF) with invasive Pseudomonas aeruginosa from non-CF patients. J Cyst Fibros. 2012 Jul;11(4):349-52. DOI: 10.1016/j.jcf.2012.01.002


Journal + Issues