Stereological Evaluation of the Brains in Patients with Parkinson’s disease Compared to Controls

Open access


Parkinson’s disease (PD) is a chronic and progressive neurological disorder. A tetrad of bradykinesia, rigidity, tremor and postural instability are the core features of the disease. The aim of this study was to evaluate stereological changes in the brain of patients with PD and compare them with that of healthy controls. This case-control study was conducted on 29 patients with PD and 12 controls (C) in Zahedan, Iran. All subjects enrolled into the study through the convenience sampling method. MRI images of the brains of two groups in frontal and sagittal axis with consecutive 5mm distance slices were captured. Parameters including total volume (V) and volume density (Vv) of different parts of the brain were estimated based on Cavalries’ point counting stereological method. To analyze the data, descriptive statistics, Mann-Whitney U-Test applied for comparing the PD and C groups were used. Significance level was set at p<0.05. Our study showed that the volume of the brain and total volume and volume density (Vv) of cerebral hemispheres, cerebellum, ventricles, hippocampus, pons, mid brain and superior cerebellar peduncles in the PD group did not indicate significant difference from the control group. Total volume of brain stem in PD group wasn’t significantly different from the control group. The volume density of brain stem (p= 0.012) and total volume and volume density of middle cerebellar peduncle (p< 0.0001) in PD group were significantly larger than the control group. This study shows that PD stereological parameters related to volume and volume density of middle cerebellar peduncle and volume density of brain stem were significantly larger in patients compared to the controls. Therefore, stereological parameters can be used for early diagnosis and probably for follow-up in patients with PD.

1. Halliday GM, McCann H. The progression of pathology in Parkinson’s disease. Annals of the New York Academy of Sciences. 2010;1184(1):188-95. DOI: 10.1111/j.1749-6632.2009.05118.x

2. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889-909. DOI: 10.1016/S0896-6273(03)00568-3

3. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010;34(6):1104-14. DOI: 10.1016/j.pnpbp.2010.06.004

4. Mounsey RB, Teismann P. Mitochondrial dysfunction in Parkinson’s disease: pathogenesis and neuroprotection. Parkinson’s Disease. 2010;2011.

5. Sato K, Hatano T, Yamashiro K, Kagohashi M, Nishioka K, Izawa N, et al. Prognosis of Parkinson’s disease: time to stage III, IV, V, and to motor fluctuations. Movement disorders. 2006;21(9):1384-95. DOI: 10.1002/mds.20993

6. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. The Lancet Neurology. 2006;5(6):525-35. DOI: 10.1016/S1474-4422(06)70471-9

7. Lolaty HA, Tirgari A, Fard JH. Emotional intelligence and related factors in medical sciences students of an Iranian university. Iranian journal of nursing and midwifery research. 2014;19(2):203.

8. Fereshtehnejad S-M, Shafieesabet M, Rahmani A, Delbari A, Lökk J. Medium-to-high prevalence of screening- detected parkinsonism in the urban area of Tehran, Iran: data from a community-based door-to-door study. Neuropsychiatric disease and treatment. 2015;11:321. DOI: 10.2147/NDT.S77391

9. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. The Lancet Neurology. 2006;5(1):75-86. DOI: 10.1016/S1474-4422(05)70285-4

10. Ciumas C, Montavont A, Ryvlin P. Magnetic resonance imaging in clinical trials. Current opinion in neurology. 2008;21(4):431-6. DOI: 10.1097/WCO.0b013e-3283056a3c

11. Halperin I, Morelli M, Korczyn AD, Youdim MB, Mandel SA. Biomarkers for evaluation of clinical efficacy of multipotential neuroprotective drugs for Alzheimer’s and Parkinson’s diseases. Neurotherapeutics. 2009;6(1):128-40. DOI: 10.1016/j.nurt.2008.10.033

12. Casteleyn C, Prims S, Van Cruchten S, Van Ginneken C. Stereology: from astronomy to veterinary oncology. Veterinary journal (London, England: 1997). 2014;202(1):3-4. DOI: 10.1016/j.tvjl.2014.06.001

13. Qualter P, Gardner KJ, Pope DJ, Hutchinson JM, Whiteley HE. Ability emotional intelligence, trait emotional intelligence, and academic success in British secondary schools: A 5year longitudinal study. Learning and Individual Differences. 2012;22(1):83-91. DOI: 10.1016/j.lindif.2011.11.007

14. Brannick MT, Wahi MM, Goldin SB. Psychometrics of mayer-salovey-caruso emotional intelligence test (MSCEIT) scores 1. Psychological reports. 2011;109(1):327-37. DOI: 10.2466/03.04.PR0.109.4.327-337

15. Duygulu S, Hicdurmaz D, Akyar I. Nursing students’ leadership and emotional intelligence in Turkey. Jour nal of Nursing Education. 2011;50(5):281-5. DOI: 10.3928/01484834-20110130-07

16. Geng D-y, Li Y-X, Zee C-S. Magnetic resonance imaging- based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson’s disease. Neurosurgery. 2006;58(2):256-62. DOI: 10.1227/01.NEU.0000194845.19462.7B

17. Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss W-D. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. Journal of Neurology, Neurosurgery & Psychiatry. 2002;73(5):517-23. DOI: 10.1136/jnnp.73.5.517

18. Gocmen-Mas N, Pelin C, Canan S, Yazici AC, Zagyapan R, Senan S, et al. Stereological evaluation of volumetric asymmetry in healthy human cerebellum. Surgical and radiologic anatomy. 2009;31(3):177-81. DOI: 10.1007/s00276-008-0424-4

19. Heidari Z, Mahmoudzadeh-Sagheb H, Hashemi M, Rigi-Ladiz MA. Quantitative analysis of interdental Gingiva in patients with chronic periodontitis and transforming growth factor-β1 29C/T gene polymorphisms. Journal of periodontology. 2014;85(2):281-9. DOI: 10.1902/jop.2013.130087

20. Heidari Z, Mahmoudzadeh-Sagheb H, Kohan F. A quantitative and qualitative study of rat testis following administration of methadone and buprenorphine. International Journal of High Risk Behaviors and Addiction. 2012;1(1):14-7. DOI: 10.5812/ijhrba.4119

21. Lee CS, Schulzer M, de la Fuente-Fernández R, Mak E, Kuramoto L, Sossi V, et al. Lack of regional selectivity during the progression of Parkinson disease: implications for pathogenesis. Archives of neurology. 2004;61(12):1920-5. DOI: 10.1001/archneur.61.12.1920

22. Lewis MM, Smith AB, Styner M, Gu H, Poole R, Zhu H, et al. Asymmetrical lateral ventricular enlargement in Parkinson’s disease. European journal of neurology. 2009;16(4):475-81. DOI: 10.1111/j.1468-1331.2008.02430.x

23. Beyer MK, Janvin CC, Larsen JP, Aarsland D. A magneticresonance imaging study of patients with Parkinson’s disease with mild cognitive impairment and dementia using voxel-based morphometry. Journal of Neurology, Neurosurgery & Psychiatry. 2007;78(3):254-9. DOI: 10.1136/jnnp.2006.093849

24. Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch J, Evans A, et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology. 2005;64(2):224-9. DOI: 10.1212/01.WNL.0000149510.41793.50

25. Fahn S, Group PS. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? Journal of neurology. 2005;252(4):iv37-iv42. DOI: 10.1007/s00415-005-4008-5

26. Douaud G, Gaura V, Ribeiro M-J, Lethimonnier F, Maroy R, Verny C, et al. Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage. 2006;32(4):1562-75. DOI: 10.1016/j.neuroimage.2006.05.057

27. Mamah D, Wang L, Barch D, de Erausquin GA, Gado M, Csernansky JG. Structural analysis of the basal ganglia in schizophrenia. Schizophrenia research. 2007;89(1):59-71. DOI: 10.1016/j.schres.2006.08.031

28. Summerfield C, Junqué C, Tolosa E, Salgado-Pineda P, Gómez-Ansón B, Martí MJ, et al. Structural brain changes in Parkinson disease with dementia: a voxel- based morphometry study. Archives of Neurology. 2005;62(2):281-5. DOI: 10.1001/archneur.62.2.281

29. Cordato N, Duggins A, Halliday G, Morris J, Pantelis C. Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy. Brain. 2005;128(6):1259-66. DOI: 10.1093/brain/awh508

30. Menke RA, Szewczyk‐Krolikowski K, Jbabdi S, Jenkinson M, Talbot K, Mackay CE, et al. Comprehensive morphometry of subcortical grey matter structures in early‐stage Parkinson’s disease. Human brain mapping. 2014;35(4):1681-90. DOI: 10.1002/hbm.22282

31. Sterling NW, Du G, Lewis MM, Dimaio C, Kong L, Eslinger PJ, et al. Striatal shape in Parkinson’s disease. Neurobiology of aging. 2013;34(11):2510-6. DOI: 10.1016/j.neurobiolaging.2013.05.017

32. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from parkinson disease and the parkinson variant of multiple system atrophy 1. Radiology. 2008;246(1):214-21. DOI: 10.1148/radiol.2453061703

33. Acharya HJ, Bouchard TP, Emery DJ, Camicioli RM. Axial signs and magnetic resonance imaging correlates in Parkinson’s disease. The Canadian Journal of Neurological Sciences. 2007;34(01):56-61. DOI: 10.1017/S0317167100005795

34. Hu M, White S, Chaudhuri KR, Morris R, Bydder G, Brooks D. Correlating rates of cerebral atrophy in Parkinson’s disease with measures of cognitive decline. Journal of neural transmission. 2001;108(5):571-80. DOI: 10.1007/s007020170057

35. Gama RL, Távora DF, Bomfim RC, Silva CE, Bruin VMd, Bruin PFd. Morphometry MRI in the differential diagnosis of parkinsonian syndromes. Arquivos de neuro- psiquiatria. 2010;68(3):333-8. DOI: 10.1590/S0004-282X2010000300001

36. Paviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC. Regional brain volumes distinguish PSP, MSA‐P, and PD: MRI‐based clinico‐radiological correlations. Movement disorders. 2006;21(7):989-96. DOI: 10.1002/mds.20877

37. Ertekin T, Acer N, İçer S, Vurdem ÜE, Çınar Ş, Özçelik Ö. Volume estimation of the subcortical structures in Parkinson’s disease using magnetic resonance imaging: A methodological study. Neurology Asia. 2015;20(2):143-53.

38. Korbo L, Amrein I, Lipp HP, Wolfer D, Regeur L, Oster S, et al. No evidence for loss of hippocampal neurons in non‐Alzheimer dementia patients. Acta neurologica scandinavica. 2004;109(2):132-9. DOI: 10.1034/j.1600-0404.2003.00182.x

39. Joelving F, Billeskov R, Christensen J, West M, Pakkenberg B. Hippocampal neuron and glial cell numbers in Parkinson’s disease-a stereological study. Hippocampus. 2006;16(10):826-33. DOI: 10.1002/hipo.20212

40. Jubault T, Brambati SM, Degroot C, Kullmann B, Strafella AP, Lafontaine A-L, et al. Regional brain stem atrophy in idiopathic Parkinson’s disease detected by anatomical MRI. PloS one. 2009;4(12):e8247. DOI: 10.1371/journal.pone.0008247

41. Toulouse A, Sullivan AM. Progress in Parkinson’s disease-where do we stand? Progress in neurobiology. 2008;85(4):376-92. DOI: 10.1016/j.pneurobio.2008.05.003

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information

IMPACT FACTOR 2017: 0.400
5-year IMPACT FACTOR: 0.320

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2017: 0.144
Source Normalized Impact per Paper (SNIP) 2017: 0.195

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 190 19
PDF Downloads 84 84 9