Biochemical and functional modifications in biathlon athletes at medium altitude training / Modificările biochimice și funcționale ale atleților biatloniști după antrenament la altitudine medie

Open access


Objective: The aim of our research was to identify physiological and biochemical changes induced by training at medium altitude.

Methods: Ten biathlon athletes underwent 28-day training camp at medium altitude in order to improve their aerobic effort, following the living high-base train high-interval train low (Hi-Hi-Lo) protocol. There were investigated three categories of functional and biochemical parameters, targeting the hematological changes (RBC, HCT, HGB), the oxidative (lipoperoxid, free malondialdehyde and total malondialdehyde) and antioxidative balance (the hydrogen donor capacity, ceruloplasmin and uric acid) and the capacity of effort (the maximum aerobic power, the cardiovascular economy in effort, the maximum O2 consumption).

Results: All the biochemical and functional evaluated parameters showed significant increases between the pre-training testing and post-training testing (5.13 ± 0.11 vs. 6.50 ± 0.09, p < 0.0001 for RBC; 44.80 ± 1.22 vs. 51.31 ± 2.31, p < 0.0001 for HCT; 15.06 ± 0.33 vs. 17.14 ± 0.25, p < 0.0001 for HGB; 1.32 ± 0.04 vs.1.62 ± 0.01, p < 0.0001 for LPx; 1.61 ± 0.01 vs. 1.73 ± 0.01, p < 0.0001 for free MDA; 2.98 ± 0.08 vs. 3.37 ± 0.03, p < 0.0001 for total MDA; 45.92 ± 0.13 vs. 57.98 ± 0.12, p < 0.0001 for HD; 25.95 ± 0.13 vs. 31.04 ± 0.06, p < 0.0001 for Crp; 3.47 ± 0.03 vs.7.69 ± 0.02, p < 0.0001 for UA; 63.91 ± 1.00 vs. 81.53 ± 1.97, p < 0.0001 for MAP; 33.13 ± 0.57 vs. 57.41 ± 0.63, p < 0.0001 for CVEE; 4190 ± 50.45 vs. 5945 ± 46.48, p < 0.0001 for VO2max).

Conclusions: Aerobic effort capacity of biathlon athletes has increased in the post-training period, using Hi-Hi-Lo protocol.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zdrenghea DT Ilea M Zdrenghea MD Sitar-Tǎut AV Pop D. The Effects of Maximal and Submaximal Exercise Testing on NT-proBNP Levels in Patients with Systolic Heart Failure. Rev Romana Med Lab. 2014;22(1):25-33. DOI: 10.2478/rrlm-2014-0008.

  • 2. Martoma A. Effort capacity. Publiher by University of Transilvania Brasov 2009;50.

  • 3. Sandor I. Antrenamentul la altitudine. Risoprint Cluj- Napoca. 2005;111-12.

  • 4. Czuba M Maszczyk A Gerasimuk D Roczniok R Fidos-Czuba O Zając A et al. The Effects of Hypobaric Hypoxia on Erythropoiesis Maximal Oxygen Uptake and Energy Cost of Exercise Under Normoxia in Elite Biathletes. J Sports Sci Med. 2014 Dec 1;13(4):912-20.

  • 5. Vargas-Pinilla OC. Exercise and Training at Altitudes: Physiological Effects and Protocols. Rev Cienc Salud. 2014;12(1):107-122. DOI: 10.12804/ revsalud12.1.2014.07.

  • 6. Bernaciková M. Physiology publisher Masaryk University 2012 Brno ISBN 978-80-210-5842-2

  • 7. Máček M Radvanský J. Fyziologie a klinické aspekty pohybové aktivity. Praha: Galén 2011; 245.

  • 8. Drăgan I. Medicina sportivă. Ed. Medicală Bucureşti 2002 416-18.

  • 9. Astrand PO Rodahl K. Text Book of Work Physiology: Physiological basis of exercise. New York: McGraw Hill 1986.

  • 10. Voidăzan S Moldovan C Dobreanu M. Suggestions and recommendations on statistical analysis and research methodology. Rev Romana Med Lab. 2014;22(4):413-8. DOI: 10.2478/rrlm-2014-0046.

  • 11. Martoma A. Notions about physiology of effort. Publisher by University of Transilvania Brasov. 2007;56-76:93.

  • 12. Martoma AM Tache S Moldovan R Chindriş AM Decea N. L’influence de l’hypoxie hypobare sur la capacité d’effort physique chez les sportifs. Palestrica Milenium III ‒ Civilization and SportVolumul VIII Nr. 2 (28) Iunie 2007:118‒22.

  • 13. Giurgea N. Fiziologia efortului fizic. Casa Cărţii de Ştiinţă Cluj-Napoca 2001:112.

  • 14. Chapman RF Stray-Gundersen J Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448-56.

  • 15. Stray-Gundersen J Chapman R Levine BD. Living high-training low altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91(3):1113-20.

  • 16. Wehrlin JP Zuest P Hallen J Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J. Appl. Physiol. 2006;100(6):1938-1945. DOI: 10.1152/japplphysiol.01284.2005.

  • 17. Calbet J.A. Lundby C Koskolou M. Boushel R. Importance of hemoglobin concentration to exercise: acute manipulations. Respir. Physiol. Neurobiol. 2006;151(2-3):132-140. DOI: 10.1016/j. resp.2006.01.014.

  • 18. Saunders PU Garvican-Lewis LA Schmidt WF Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013 Dec;47 Suppl 1:i26-30.DOI: 10.1136/bjsports-2013-092841.

  • 19. Prommer N Thoma S Quecke L Gutekunst T Volzke C Wachsmuth N et al. Total hemoglobin mass and blood volume of elite Kenyan runners. Med Sci Sports Exerc. 2010 Apr;42(4):791-7. DOI: 10.1249/ MSS.0b013e3181badd67.

  • 20. Garvican L Martin D Quod M Stephens B Sassi A Gore C. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 2012 Feb;22(1):95-103. DOI: 10.1111/j.1600-0838.2010.01145.x.

  • 21. Woorons X Mollard P Lamberto C Letournel M Richalet JP. Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc. 2005;37(1):147-154. DOI: 10.1249/01.MSS.0000150020.25153.34.

  • 22. Garvican-Lewis LA Halliday I Abbiss CR Saunders PU Gore CJ. Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. Journal of Sports Science & Medicine. 2015; 14(2) 413-417.

  • 23. Gore CJ Sharpe K Garvican-Lewis LA. Saunders PU Humberstone CE Robertson EY et al. Altitude training and haemoglobin mass from the optimised carbon monoxide re-breathing method determined by a meta-analysis. Br J Sports Med. 2013;47:i31-i39. DOI: 10.1136/ bjsports-2013-092840.

  • 24. Wilber RL Holm PL Morris DM Dallam GM Subudhi AW Murray DM et al. Effect of FIO2 on oxidative stress during interval training at moderate altitude. Med. Sci. Sports Exerc. 2004; 36(11):1888-94.DOI: 10.1249/01.MSS.0000145442.25016.DD.

  • 25. Spriet LL. New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise Sports Med.2014; 44(Supplement1):87-96. DOI: 10.1007/s40279-014-0154-1.

  • 26. Ganong WF. Review of Medical Physiology: twenty- first edition a Lange Medical Book. 2003:463-4.

  • 27. Saugy JJ Schmitt L Cejuela R Faiss R Hauser A Wehrlin JP et al. Comparison of “Live High-Train Low” in Normobaric versus Hypobaric Hypoxia PLoS One. 2014;9(12): e114418. DOI: 10.1371/journal. pone.0114418.

  • 28. Radziievskii PO Radziievska M. Hypoxic training of high qualification sportsmen. Fiziol. Zh 2003 49(3):126-33.

  • 29. McArdle WD Katch FI Katch VL. Exercise Physiology: Nutrition Energy and Human Performance Lippincott Williams&Wilkins. 2010:616-17.

  • 30. Chapman RF Stickford JL Levine BD. Altitude training considerations for the winter sport athlete. Experimental Physiology 2010;95:411-421. DOI: 10.1113/expphysiol.2009.050377.

  • 31. Girard O Pluim BM. Improving team-sport player’s physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med 2013;47:i2- i3. DOI: 10.1136/bjsports-2013-093119.

  • 32. Chapman RF Karlsen T Resaland GK Ge R-L Harber MP Witkowski S et al. Defining the “dose” of altitude training how high to live for optimal sea level performance enhancement. J Appl Physiol 2014;116(6):595-603. DOI: 10.1152/japplphysiol.00634.2013.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.800
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 88 2
PDF Downloads 294 55 1