Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

Open access


Background: Thioredoxin reductase (TrxR), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

Methods: Sprague-Dawley rats divided into three groups. Rats in control group were not subjected to any of treatments and their brains were removed under anesthesia. Middle cerebral arters were exposed but not occluded for the sham-operated rats. Animals were subjected to permanent middle cerebral arter occlusion (MCAO) in MCAO-operated group. The rats were decapitated at 16 hours (h), 48 h and 96 h after sham operation and focal cerebral ischemia. TrxR activities, EGF and TNF-α levels were measured in ischemic and non-ischemic hemispheres for all groups.

Results: In group MCAO, TrxR activities were significantly low at 48 h in ischemic hemisphere in comparison to control. After the 48 h, a remarkable increase was observed at 96 h. EGF and TNF-α levels were substantially high at 96 h in group MCAO of ischemic brain.

Conclusion: TrxR activity was reduced by oxidative stress which was formed by ischemia. EGF levels increased to exhibit neurotrophic and neuroprotective effects. After ischemia, TNF-α levels increased as a response to the tissue damage. Further studies with a higher number of experimental subjects and shorter or longer periods such as from first 30 minutes up to 3 months may be more informative to show the time-dependent variations in TrxR, EGF and TNF-α in cerebral ischemic injury.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. McDonald RL Stoodley M. Pathophysiology of cerebral ischemia. Neurol Med Chir. 1998 Jan; 38(1):1-11.DOI: 10.2176/nmc.38.1.

  • 2. Lu J Holmgren A. The thioredoxin antioxidant system.Free Radic Biol Med. 2014 Jan;66:75-87. DOI: 10.1016/j.freeradbiomed.2013.07.036.

  • 3. Korge P Calmettes G Weiss JN. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. DOI: 10.1016/j. bbabio.2015.02.012.

  • 4. Aon-Bertolino ML Romero JI Galeano P Holubiec M Badorrey MS Saraceno GE et al. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta. 2011 Jan;1810(1):93-110. DOI: 10.1016/j.bbagen.2010.06.011.

  • 5. Oliveira SLB Pillat MM Cheffer A Lameu C Schwindt TT Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A. 2013 Jan;83(1)76-89. DOI: 10.1002/cyto.a.22161.

  • 6. Ma XL Liu KD Li FC Jiang XM Jiang L Li HL. Human mesenchymal stem cells increases expression of α-tubulin and angiopoietin 1 and 2 in focal cerebral ischemia and reperfusion. Curr Neurovasc Res. 2013 May;10(2):103-11. DOI: 10.2174/1567202611310020003.

  • 7. Abdullah Z Rakkar K Bath PM Bayraktutan U. Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage. Mol Cell Neurosci. 2015 Nov;69:65-79. DOI: 10.1016/j.mcn.2015.11.003.

  • 8. Majid A He YY Gidday JM Kaplan SS Gonzales ER Park TS et al. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse srtrains. Stroke. 2000 Nov;31(11):2707-14. DOI: 10.1161/01.STR.31.11.2707.

  • 9. Shichinoke H Kuroda S Yasuda H Ishikawa T Iwai M Horiuchi M et al. Neuroprotective effects of the free radical scavenger Edavarone (MCI-186) in mice permanent focal brain ischemia. Brain Res. 2004 Dec;1029(2):200-6. DOI: 10.1016/j.brainres. 2004.09.055.

  • 10. Shichinoke H Kuroda S Abumiya T Ikeda J Kobayashi T Yoshimoto T et al. FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release. Brain Res. 2004 Mar;1001(1-2):51-9. DOI: 10.1016/j.brainres.2003.11.054.

  • 11. Lowry OH Rosebrough NJ Farr AL Randall RJ. Protein measurements with the folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75.

  • 12. Holmgren A. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977 Jul;252(13):4600-6.

  • 13. Tamura A Graham DI McCulloch J Teasdale GM. Focal cerebral ischemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodoantipyrine autoradiography foolowing middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981; 1(1): 61-9. DOI: 10.1038/jcbfm.1981.7.

  • 14. Taxin ZH Neymotin SA Mohan A Lipton P Lytton WW. Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci. 2014;123:249-75. DOI: 10.1016/B978-0-12-397897-4.00014-0.

  • 15. Ren Y Wei B Song X An N Zhou Y Jin X et al. Edaravone’s free radical scavenging mechanisms of neuroprotection against cerebral ischemia: review of the literature. Int J Neurosci. 2015;125(8):555-65. DOI: 10.3109/00207454.2014.959121.

  • 16. Manzanero S Santro T Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int. 2013 Apr;62(5):712-8. DOI: 10.1016/j.neuint.2012.11.009.

  • 17. Sanderson TH Reynolds CA Kumar R Przyklenk K Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013 Feb;47(1):9-23. DOI: 10.1007/s12035-012-8344-z.

  • 18. Nagayama T Lan J Henshall DC Chen O’Horo C Simon RP Chen J. Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia. J Neurochem. 2000 Oct;75(4):1716-28. DOI: 10.1046/j.1471-4159.2000.0751716.x.

  • 19. Liu PK Hsu CY Dizdaroglu M Floyd RA Kow YW Karakaya A et al. Damage repair and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J Neurosci. 1996 Nov;16(21):6795-806.

  • 20. Olmez I Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int. 2012 Jan;60(2):208-12. DOI: 10.1016/j.neuint.2011.11.009.

  • 21. Takagi K Kanemitsu H Kohno M Mitsuda K Tomukai N Oka H et al. Temporal profile of the superoxide dismutase and the ascorbic acid in focal cerebral ischemia. No To Shinkei. 1991 Nov;43(11):1075-80.

  • 22. Sermet A Taşdemir N Deniz B Atmaca M. Timedependent changes in superoxide dismutase catalase xanthine dehydrogenase and oxidase activities in focal cerebral ischemia. Cytobios. 2000;102(401):157-72.

  • 23. Mahadik SP Makar TK Murthy JN Ortiz A Wakade CG Karpiak SE. Temporal changes in superoxide dismutase glutathion peroxidase and catalase levels in primary and peri-ischemic tissue. Monosialoganglioside (GM1) treatment effects.). Mol Chem Neuropathol. 1993 Jan-Feb;18(1-2):1-14. DOI: 10.1007/BF03160018.

  • 24. Li X Xiao Z Han J Chen L Xiao H Ma F et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013 Jul;34(21):5107-16. DOI: 10.1016/j.biomaterials. 2013.03.062.

  • 25. Hoffmann M Schmidt M Wels W. Activation of EGF receptor family members suppresses the cytotoxic effects of tumor necrosis factor-alpha. Cancer Immunol Immunother. 1998 Nov;47(3):167-75. DOI: 10.1007/s002620050517.

  • 26. Ahnstedt H Stenman E Cao L Henriksson M Edvinsson L. Cytokines and growth factors modify the upregulation of contractile endothelin ET(A) and ET(B) receptors in rat cerebral arteries after organ culture. Acta Physiol (Oxf). 2012 Jun;205(2):266-78. DOI: 10.1111/j.1748-1716.2011.02392.x.

  • 27. García Del Barco-Herrera D Martínez NS Coro- Antich RM Machado JM Alba JS Salgueiro SR et al. Epidermal growth factor and growth hormone-releasing peptide-6: combined therapeutic approach in experimental stroke. Restor Neurol Neurosci. 2013;31(2):213-23.

  • 28. Guegan C Ceballos-Picot I Chevalier E Nicole A Onténiente B Sola B. Reduction of ischemic damage in NGF-transgenic mice: correlation with enhancement of antioxidant enzyme activities. Neurobiol Dis. 1999 Jun;6(3):180-9. DOI: 10.1006/nbdi.1999.0240.

  • 29. Larpthaveesarp A Ferriero DM Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci. 2015 Apr;5(2):165-77. DOI: 10.3390/brainsci5020165.

  • 30. Naylor M Bowen KK Sailor KA Dempsey RJ Vemuganti R. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int. 2005 Dec;47(8):565-72. DOI: 10.1016/j.neuint.2005.07.003.

  • 31. Breitling R Hoeller D. Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Lett. 2005 Nov;579(28):6289-94. DOI: 10.1016/j.febslet.2005.10.034.

  • 32. Galvez-Contreras AY Qui-ones-Hinojosa A Gonzalez- Perez O. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci. 2013 Dec; 7:258. DOI: 10.3389/fncel.2013.00258.

  • 33. Tu XK Yang WZ Chen JP Chen Y Ouyang LQ Xu YC et al. curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 2014 Oct;37(5):1544-51. DOI: 10.1007/s10753-014-9881-6.

  • 34. Tu XK Yang WZ Wang CH Shi SS Zhang YL Chen CM et al. Zileuton reduces inflammatory reaction and brain damage following permanent cerebral ischemia in rats. Inflammation. 2010 Oct;33(5):344-52. DOI: 10.1007/s10753-010-9191-6.

  • 35. Jin R Liu L Zhang S Nanda A Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013 Oct;6(5):834-51. DOI: 10.1007/s12265-013-9508-6.

  • 36. Katayama Y Inaba T Nito C Ueda M. Neuroprotective effects of erythromycin on ischemic injury following permanent focal cerebral ischemia in rats. Neurol Res. 2016 Mar;38(3):275-84. DOI: 10.1080/01616412.2016.1138662.

  • 37. Chen J Wu X Shao B Zhao W Shi W Zhang S et al. Increased expression of TNF receptor-associated factor 6 after rat traumatic brain injury. Cell Mol Neurobiol. 2011 Mar;31(2):269-75. DOI: 10.1007/s10571-010-9617-6.

  • 38. Liu F Chen MR Liu J Zou Y Wang TY Zuo YX et al. Propofol administration improves neurological function associated with inhibition of pro-inflammatory cytokines in adult rats after traumatic brain injury. Neuropeptides. 2016 Mar 24. pii: S0143-4179(16)30027-0.

  • 39. Fan L Young PR Barone FC Feuerstein GZ Smith DH McIntosh TK. Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Mol Brain Res. 1996 Mar;36(2):287-91. DOI: 10.1016/0169-328X(95)00274-V.

  • 40. Doll DN Rellick SL Barr TL Ren X Simpkins JW. Rapid mitochondrial dysfunction mediates TNFalpha- induced neurotoxicity. J Neurochem. 2015 Feb;132(4):443-51. DOI: 10.1111/jnc.13008.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.800
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 118 7
PDF Downloads 130 56 6