A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

Open access

Abstract

The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kalla M Herring N. Physiology of shock and volume resuscitation. Surg. 2013;31(11):545–51. DOI: 10.1016/j.mpsur.2013.08.012

  • 2. White NJ Martin EJ Brophy DF Ward KR. Coagulopathy and traumatic shock: Characterizing hemostatic function during the critical period prior to fluid resuscitation. Resuscitation. 2010;81:111–6. DOI: 10.1016/j.resuscitation.2009.09.017

  • 3. Zampieri FG Kellum J a Park M Ranzani OT Barbeiro H V de Souza HP et al. Relationship between acid-base status and inflammation in the critically ill. Crit Care. 2014;18(4):R154. DOI: 10.1186/cc13993

  • 4. Trancă SD Laura C Hagă N. Biomarkers in polytrauma induced systemic inflammatory response syndrome and sepsis – a narrative review. Rom J Anesth Int Care. 2014;21(2):118–22.

  • 5. Maschirow L Khalaf K La-Aubaidy H Jelinek HF. Inflammation coagulation endothelial dysfunction and oxidative stress in prediabetes — Biomarkers as a possible tool for early disease detection for rural screening. Clin Biochem. 2015;48(9):581-5. DOI: 10.1016/j.clinbiochem.2015.02.015

  • 6. Gilad S Meiri E Yogev Y Benjamin S Lebanony D Yerushalmi N et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):1–7. DOI: 10.1371/journal.pone.0003148

  • 7. Weber J Baxter DH Zhang S Huang DY Huang KH Lee MJ et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41. DOI: 10.1373/clinchem.2010.147405

  • 8. Zhou J Chaudhry H Zhong Y Ali MM Perkins LA Owens WB et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine. 2015;71(1):89–100. DOI: 10.1016/j.cyto.2014.09.003

  • 9. Roderburg C Luedde T. Circulating microRNAs as markers of liver inflammation fibrosis and cancer. J Hepatol. 2014;61(6):1434–7. DOI: 10.1016/j.jhep.2014.07.017

  • 10. Donati A Damiani E Luchetti M Domizi R Scorcella C Carsetti A et al. Microcirculatory effects of the transfusion of leukodepleted or non-leukodepleted red blood cells in patients with sepsis: a pilot study. Crit Care. 2014;18(2):R33. DOI: 10.1186/cc13730

  • 11. Bateman RM Sharpe MD Jagger JE Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care. 2015;19(1):389. DOI: 10.1186/s13054-015-1102-7

  • 12. Chelazzi C Villa G Mancinelli P De Gaudio a R Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19(1):1–7. DOI: 10.1186/s13054-015-0741-z

  • 13. Donato A Pierce G Lesniewski L Seals D. Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging. 2009;1(8):678–81. DOI: 10.18632/aging.100080

  • 14. Zhang Y Liu D Chen X Li J Li L Bian Z et al. Secreted Monocytic miR-150 Enhances Targeted Endo-thelial Cell Migration. Mol Cell. 2010;39(1):133–44. DOI: 10.1016/j.molcel.2010.06.010

  • 15. Jickling GC Ander BP Zhan X Noblett D Stamova B Liu D. MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One. 2014;9(6). DOI: 10.1371/journal.pone.0099283

  • 16. Scott E Loya K Mountford J Milligan G Baker AH. MicroRNA regulation of endothelial homeostasis and commitment - Implications for vascular regeneration strategies using stem cell therapies. Free Radic Biol Med. 2013;64:52–60. DOI: 10.1016/j.freeradbiomed.2013.04.037

  • 17. Hulsmans M De Keyzer D Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25(8):2515–27. DOI: 10.1096/fj.11-181149

  • 18. Agrawal R Pandey P Jha P Dwivedi V Sarkar C Kulshreshtha R. Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genomics. 2014;15(1):686. DOI: 10.1186/1471-2164-15-686

  • 19. Huang C Xiao X Chintagari NR Breshears M Wang Y Liu L. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med Genomics 2014;7(1):1–15. DOI: 10.1186/1755-8794-7-46

  • 20. Weiss JB Eisenhardt SU Stark GB Bode C Moser M Grundmann S. MicroRNAs in ischemia-reperfusion injury. Am J Cardiovasc Dis. 2012;2(3):237–47.

  • 21. Zhou L Zang G Zhang G Wang H Zhang X Johnston N et al. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One. 2013;8(11):e79805. DOI: 10.1371/journal.pone.0079805

  • 22. Harris T a Yamakuchi M Ferlito M Mendell JT Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Pnas. 2008;105(5):1516–21. DOI: 10.1073/pnas.0707493105

  • 23. Salloum-Asfar S Teruel-Montoya R Arroyo AB García-Barberá N Chaudhry A Schuetz E et al. Regulation of Coagulation Factor XI Expression by MicroRNAs in the Human Liver. PLoS One. 2014;9(11):e111713. DOI: 10.1371/journal.pone.0111713

  • 24. Chen Z Li Y Zhang H Huang P Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29(30):4362–8. DOI: 10.1038/onc.2010.193

  • 25. Hu Y Deng H Xu S Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2015;16(10):24895–917. DOI: 10.3390/ijms161024895

  • 26. Varga Z V Kupai K Szűcs G Gáspár R Pálóczi J Faragó N et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol. 2015;62:111–21. DOI: 10.1016/j.yjmcc.2013.05.009

  • 27. Xu Y Fang F Zhang J Josson S St Clair WH St Clair DK. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One. 2010;5(12):e14356. DOI: 10.1371/journal.pone.0014356

  • 28. Bai X-Y Ma Y Ding R Fu B Shi S Chen X-M. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22(7):1252–1261. DOI: 10.1681/ASN.2010040367

  • 29. Wang L Huang H Fan Y Kong B Hu H Hu K et al. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway. Oxid Med Cell Longev. 2014;2014:960362. DOI: 10.1155/2014/960362

  • 30. Ma X Becker Buscaglia LE Barker JR Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol. 2011;3(3):159–66. DOI: 10.1093/jmcb/mjr007

  • 31. Li T Morgan MJ Choksi S Zhang Y Kim Y-S Liu Z. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat Immunol. 2010;11(9):799–805. DOI: 10.1038/ni.1918

  • 32. Zhang X Liu S Hu T Liu S He Y Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50(2):490–9. DOI: 10.1002/hep.23008

  • 33. Haddad JJ. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-κB. Crit Care. 2002;6:481–90. DOI: 10.1186/cc1839

  • 34. Huang J Sun Z Yan W Zhu Y Lin Y Chen J et al. Identification of MicroRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int. 2014;2014.

  • 35. Wang H Yu B Deng J Jin Y Xie L. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit Care. 2014;18(6):1–4. DOI: 10.1186/s13054-014-0704-9

  • 36. Ma Y Vilanova D Atalar K Delfour O Edgeworth J Ostermann M et al. Genome-Wide Sequencing of Cellular microRNAs Identifies a Combinatorial Expression Signature Diagnostic of Sepsis. PLoS One. 2013;8(10). DOI: 10.1371/journal.pone.0075918

  • 37. Magenta A Greco S Gaetano C Martelli F. Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci. 2013;14(9):17319–46. DOI: 10.3390/ijms140917319

  • 38. Moore CC McKillop IH Huynh T. MicroRNA expression following activated protein C treatment during septic shock. J Surg Res. 2012;182(1):116–26. DOI: 10.1016/j.jss.2012.07.063

  • 39. Vasilescu C Rossi S Shimizu M Tudor S Veronese A Ferracin M et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One. 2009;4(10). DOI: 10.1371/journal.pone.0007405

  • 40. McClure C Brudecki L Ferguson Da. Yao ZQ Moorman JP McCall CE et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun. 2014;82(9):3816–25. DOI: 10.1128/IAI.01495-14

  • 41. Vaporidi K Iliopoulos D Francis RC Bloch KD Zapol WM. MicroRNA Expression Profile In A Murine Model Of Ventilator-induced Lung Injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–L207. DOI: 10.1152/ajplung.00370.2011

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.800
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 259 159 6
PDF Downloads 121 71 0