Optimisation of the quantitative analysis of inflammatory cell infiltrates in breast cancer /Optimizarea analizei cantitative a infiltratului celular inflamator în cancerul mamar

Open access

Abstract

In this study we aimed to determine the optimal cut-off point for the quantitative analysis of inflammatory infiltrates in breast cancer, using the HistoQuest system. We used samples of tumour breast tissue which were IHC stained with CD68 and CD8 and subsequently tested with automated systems on three regions: intratumoral, invasive front and peritumoral, using the HistoQuest system. In order to delimit between positive and negative cells on histograms and scattergrams, we need to set a cut-off value. We compared 5 cut-off types for optimisation of the quantitative analysis. The results obtained statistically for the CD8 marker for all 5 types of cut-offs applied on IT, PT and IF regions did not show statistically significant differences (p > 0.05). As for the CD68 marker, we found statistically significant differences (p < 0.05) between manual cut-offs (C2 - manual and C3 - manual, arithmetic mean) and automated cut-offs placed by the software (C1 - automated, C4 - negative region, and C5 - automated, arithmetic mean), which suggests that the use of an automated cut-off should be preferred in order to remove the subjective factor. The automated cut-off setting generates objective and reproducible data and can be used in subsequent quantitative analyses.

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010 Sep-Oct;60(5):277-300. DOI: 10.3322/caac.20073

2. DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 2010 Jun;29(2):309-16. DOI: 10.1007/s10555-010-9223-6

3. Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat. 2010 Apr;120(2):293-308. DOI: 10.1007/ s10549-010-0746-x

4. Jochems C, Schlom J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood). 2011 May;236(5):567-79. DOI: 10.1258/ ebm.2011.011007

5. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012 Mar;12(4):298-306. DOI: 10.1038/nrc3245

6. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012 Aug;37(2):364-76. DOI: 10.1016/j.immuni. 2012.07.011

7. Ascierto PA, Capone M, Urba WJ, Bifulco CB, Botti G, Lugli A, et al. The additional facet of immunoscore: immunoprofiling as a possible predictive tool for cancer treatment. J Transl Med. 2013 Mar;11:54. DOI: 10.1186/1479-5876-11-54

8. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune scor as a new possible approach for the classification of cancer. J Transl Med 2012 Jan;10:1. DOI: 10.1186/1479-5876-10-1

9. Al-Kofahi Y, Lassoued W, Grama K, Nath SK, Zhu J, Oueslati R, et al. Cell-based quantification of molecular biomarkers in histopathology specimens. Histopathology 2011 Jul;59(1):40-54. DOI: 10.1111/j.1365-2559.2011.03878.x

10. Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, et al. Impact of CD68/ (CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One. 2012; 7(12): e52796. DOI: 10.1371/ journal.pone.0052796

11. Chang H, Yang Q, Parvin B. Segmentation of heterogeneous blob objects through voting and level set for mulation. Pattern Recognit Lett. 2007;28(13):1781-7. DOI: 10.1016/j.patrec.2007.05.008

12. Lin G, Chawla MK, Olson K, Guzowski JF, Barnes CA, Roysam B. Hierarchical, model-based merging of multiple fragments for improved three-dimensional segmentation of nuclei. Cytometry A. 2005;63(1):20-33. DOI: 10.1002/cyto.a.20099

13. De Solorzano CO, Malladi R, Lelievre SA, Lockett SJ. Segmentation of nuclei and cells using membrane related protein markers. J Microsc. 2001 Mar;201(Pt 3):404-1. DOI: 10.1046/j.1365-2818.2001.00854.x

14. Ancin H, Roysam B, Dufresne TE, Chestnut MM, Ridder GM, Szarowski DH, et al. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy. Cytometry. 1996 Nov;25(3):221-34. DOI: 10.1002/(SICI)1097-0320(19961101)25:3<221::AIDCYTO3> 3.3.CO;2-O DOI: 10.1002/(SICI)1097-0320(19961101)25:3<221::AID-CYTO3>3.0.CO;2-I

15. Căruntu ID, Covic A. Renal corpuscle morphometry with increased reliability and high level of automation. Pathol Res Pract. 2007;203:9-20. DOI: 10.1016/j. prp.2006.06.002

16. Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012 Jan;10:1. DOI: 10.1186/1479-5876-10-1

17. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011 May;29(15):1949-55. DOI: 10.1200/ JCO.2010.30.5037

18. Dutta S, Going JJ, Crumley AB, Mohammed Z, Orange C, Edwards J, et al. The relationship between tumour necrosis, tumour proliferation, local and systemic inflammation, microvessel density and survival in patients undergoing potentially curative resection of oesophageal adenocarcinoma. Br J Cancer. 2012 Feb;106(4):702-10. DOI: 10.1038/bjc.2011.610

19. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012 Apr;132(2):545-53. DOI: 10.1007/s10549-011-1620-1

20. Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD, McKinney S, et al. Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res Treat. 2008 Aug;110(3):417-26. DOI: 10.1007/s10549-007-9736-z

21. Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862. DOI: 10.1371/journal. pone.0051862

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information


IMPACT FACTOR 2018: 0,800
5-year IMPACT FACTOR: 0,655



CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 142 23
PDF Downloads 77 62 5