Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis

Open access


Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but transcriptional events that underlie this process remain to be established. To gain deeper insight into molecular mechanisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ventricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricular expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen. Atrial expression levels of 19 genes were positively correlated with age. Ventricular transcriptomic analysis revealed a balance between up-regulated and down-regulated genes encoding for the same ion channels. Conclusion: Our results indicate the induction of an up-regulation transcriptional response in atrial but not ventricular myocytes with advancing age, suggesting that the two chambers undergo different molecular remodeling programs. Aging atria displayed a transcriptomic profile consistent with higher propensity to arrhythmias, including up-regulation of genes encoding for If, ICa-L, ICa-P, INa, outward K+ currents, and collagen, while ventricular transcriptome did not seem to be significantly altered by aging. These observations could explain the higher propensity to atrial than ventricular arrhythmias in the elderly.

1. Chow GV, Marine JE, Fleg JL. Epidemiology of arrhythmias and conduction disorders in older adults. Clin Geriatr Med. 2012 Nov;28(4):539-53. DOI: 10.1016/j. cger.2012.07.003

2. Mirza M, Strunets A, Shen WK, Jahangir A. Mechanisms of arrhythmias and conduction disorders in older adults. Clin Geriatr Med. 2012 Nov;28(4):555-73. DOI: 10.1016/j.cger.2012.08.005

3. Brembilla-Perrot B. Age-related changes in arrhythmias and electrophysiologic properties. Card Electrophysiol Rev. 2003 Jan;7(1):88-91. DOI: 10.1023/A:1023611727947

4. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul;273:59-63. DOI: 10.1126/science.273.5271.59

5. Ramsey JJ, Harper ME, Weindruch R. Restriction of energy intake, energy expenditure, and aging. Free Radic Biol Med. 2000 Nov;29:946-68. DOI: 10.1016/ S0891-5849(00)00417-2

6. Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell. 2002 Dec;1:117-23. DOI: 10.1046/j.1474-9728.2002.00015.x

7. Gavrilov LA, Gavrilova NS. Evolutionary theories of aging and longevity. Sci World J. 2002 Feb;2:339-56. DOI: 10.1100/tsw.2002.96

8. Volkova M, Garg R, Dick S, Boheler KR. Aging-associated changes in cardiac gene expression. Cardiovasc Res. 2005 May;66(2):194-204. DOI: 10.1016/j.cardiores. 2004.11.016

9. Gaborit N, Wichter T, Varro A, Szuts V, Lamirault G, Eckardt L, et al. Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases. Eur Heart J. 2009 Feb;30(4):487-96. DOI: 10.1093/eurheartj/ehn520

10. Boheler KR, Volkova M, Morrell C, Garg R, Zhu Y, Margulies K, et al. Sex- and age-dependent human transcriptome variability: Implications for chronic heart failure. Proc Natl Acad Sci U S A. 2003 Mar; 100(5):2754-9. DOI: 10.1073/pnas.0436564100

11. Melov S, Coskun PE, Wallace DC. Mouse models of mitochondrial disease, oxidative stress, and senescence. Mutat Res. 1999 Jul;434: 233-42. DOI: 10.1016/ S0921-8777(99)00031-2

12. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A. Genetic mouse models of extended lifespan. Exp Gerontol. 2003 Nov-Dec;38:1353-64. DOI: 10.1016/j.exger.2003.10.019

13. Jazwinski SM. Aging and longevity genes. Acta Biochim Pol. 2000;47:269-79.

14. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011 Mar;123:e269-36713. DOI: 10.1161/ CIR.0b013e318214876d

15. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ,Berry JD,Borden WB, et al. Executive summary: heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012 Jan;125(1):188-97. DOI: 10.1161/ CIR.0b013e3182456d46

16. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006 Jul;114:119-25. DOI: 10.1161/CIRCULATIONAHA.105.595140

17. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008 Aug;118:800-7. DOI: 10.1161/CIRCULATIONAHA. 108.785626

18. Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011 Aug;121(8):2955-68. DOI: 10.1172/JCI46315

19. Nattel S, Li D, Yue L. Basic mechanisms of atrial fibrillation: very new insights into very old ideas. Annu Rev Physiol. 2000;62:51-77. DOI: 10.1146/annurev.physiol. 62.1.51

20. Yamada M, Ohta K, Niwa A, Tsujino N, Nakada T, Hirose M. Contribution of L-type Ca2+ channels to early afterdepolarizations induced by I Kr and I Ks channel suppression in guinea pig ventricular myocytes. J Membr Biol. 2008 Apr;222(3):151-66. DOI: 10.1007/ s00232-008-9113-9

21. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. Atrial L-Type Ca2+ currents and human atrial fibrillation. Circ Res. 1999 Sep;85:428-36. DOI: 10.1161/01.RES.85.5.428

22. Gaspo R, Bosch RF, Bou-Abboud E, Nattel S. Tachycardia- induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res. 1997 Dec;81:1045-52. DOI: 10.1161/01.RES.81.6.1045

23. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008 Oct;52(16):1326-34. DOI: 10.1016/j.jacc.2008.07.013

24. Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunsø S, et al. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res. 2013 Jun;98(3):488-95. DOI: 10.1093/cvr/cvt028

25. Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, et al. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007 Feb;4(2):110-6. DOI: 10.1038/ncpcardio0792

26. Limberg SH, Netter MF, Rolfes C, Rinné S, Schlichthörl G, Zuzarte M, et al. TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. Cell Physiol Biochem. 2011;28(4):613-24. DOI: 10.1159/000335757

27. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997 Aug;96(4):1180-4. DOI: 10.1161/01.CIR.96.4.1180

28. Scridon A, Gallet C, Arisha MM, Oréa V, Chapuis B, Li N, et al. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: The role of the autonomic nervous system. Am J Physiol Heart Circ Physiol. 2012 Aug;303(3):H386-92. DOI: 10.1152/ ajpheart.00004.2012

29. Lai LP, Su MJ, Lin JL, Tsai CH, Lin FY, Chen YS, et al. Measurement of funny current (I(f)) channel mRNA in human atrial tissue: Correlation with left atrial filling pressure and atrial fibrillation. J Cardiovasc Electrophysiol. 1999 Jul;10:947-53. DOI: 10.1111/j.1540-8167.1999.tb01265.x

30. Morel E,Meyronet D, Thivolet-Bejuy F, Chevalier P. Identification and distribution of interstitial Cajal cells in human pulmonary veins. Heart Rhythm. 2008 Jul;5:1063-7. DOI: 10.1016/j.hrthm.2008.03.057

31. Suenari K, Cheng CC, Chen YC, Lin YK, Nakano Y, Kihara Y, et al. Effects of Ivabradine on the pulmonary vein electrical activity and modulation of pacemaker currents and calcium homeostasis. J Cardiovasc Electrophysiol. 2012 Feb;23(2):200-6. DOI: 10.1111/j.1540-8167.2011.02173.x

32. Li Y, Huang Y, Li Z, Wang H, Song J, Liu Y, et al. Effect of ivabradine on hyperpolarization activated cation current in canine pulmonary vein sleeve cardiomyocytes with atrial fibrillation J Geriatr Cardiol. 2008;5(1):39-42.

33. Xue X, Yan GX. The funny current (If): is it a novel antiarrhythmic target to treat atrial fibrillation? J Cardiovasc Electrophysiol. 2012 Feb;23(2):207-8. DOI: 10.1111/j.1540-8167.2011.02209.x

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information

IMPACT FACTOR 2018: 0,800
5-year IMPACT FACTOR: 0,655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 163 13
PDF Downloads 66 58 5