Cite

1. Kariyawasan CC, Hughes DA, Jayatillake MM, Mehta AB. Multiple myeloma: causes and consequences of delay in diagnosis. QJM 2007; 100:635.10.1093/qjmed/hcm07717846059Search in Google Scholar

2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62:10.10.3322/caac.2013822237781Search in Google Scholar

3. Phekoo KJ, Schey SA, Richards MA, Bevan DH, Bell S, Gillett D, et al. A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br J Haematol 2004; 127:299.10.1111/j.1365-2141.2004.05207.x15491289Search in Google Scholar

4. Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010; 116:3724.10.1182/blood-2010-05-28263220664057Search in Google Scholar

5. Smith A, Howell D, Patmore R, Jack A, Roman E. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer 2011; 105:1684.10.1038/bjc.2011.450324260722045184Search in Google Scholar

6. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003; 78:21.10.4065/78.1.2112528874Search in Google Scholar

7. Waxman AJ, Mink PJ, Devesa SS, Anderson WF, Weiss BM, Kristinsson SY, et al. Racial disparities in incidence and outcome in multiple myeloma: a population- based study. Blood 2010; 116:5501.10.1182/blood-2010-07-298760303140020823456Search in Google Scholar

8. Huang SY, Yao M, Tang JL, Lee WC, Tsay W, Cheng AL, et al. Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer 2007; 110:896.10.1002/cncr.2285017594697Search in Google Scholar

9. Lynch HT, Sanger WG, Pirruccello S, Quinn-Laquer B, Weisenburger DD. Familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst 2001; 93(19):147910.1093/jnci/93.19.147911584064Search in Google Scholar

10. Winearls CG. Acute myeloma kidney. Kidney Int 1995; 48:1347.10.1038/ki.1995.4218569099Search in Google Scholar

11. Smith A, Wisloff F, Samson D; UK Myeloma Forum; Nordic Myeloma Study Group; British Committee for Standards in Haematology. Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol 2006; 132:410.10.1111/j.1365-2141.2005.05867.x16412016Search in Google Scholar

12. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121:749.10.1046/j.1365-2141.2003.04355.xSearch in Google Scholar

13. Rajkumar SV, Dispenzieri A, Fonseca R, Lacy MQ, Geyer S, Lust JA, et al. Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia 2001; 15:1274.10.1038/sj.leu.240218311480571Search in Google Scholar

14. Rajkumar SV, Dispenzieri A, Kyle RA. Monoclonal gammopathy of undetermined significance, Waldenström macroglobulinemia, AL amyloidosis, and related plasma cell disorders: diagnosis and treatment. Mayo Clin Proc 2006; 81:693.10.4065/81.5.69316706268Search in Google Scholar

15. Bladé J, Fernández-Llama P, Bosch F, Montolíu J, Lens XM, Montoto S, et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch Intern Med 1998; 158:1889.10.1001/archinte.158.17.18899759684Search in Google Scholar

16. Sakhuja V, Jha V, Varma S, Joshi K, Gupta KL, Sud K, et al. Renal involvement in multiple myeloma: a 10- year study. Ren Fail 2000; 22:46510.1081/JDI-100100888Search in Google Scholar

17. http://www.uptodate.com/contents/types-of-renal-disease-in-multiple-myelomaSearch in Google Scholar

18. Sanders PW. Mechanisms of Light Chain Injury along the Tubular Nephron. J Am Soc Nephrol 2012; 23(11):177710.1681/ASN.201204038822997259Search in Google Scholar

19. Dennen P, Parikh CR. Biomarkers of acute kidney injury: can we replace serum creatinine? Clin Nephrol 2007; 68(5):269.Search in Google Scholar

20. Siew ED, Ware LB, Ikizler TA. Biological markers of acute kidney injury. J Am Soc Nephrol 2011; 22:810.10.1681/ASN.201008079621493774Search in Google Scholar

21. Mussap M, Dalla Vestra M, Fioretto P, Saller A, Varagnolo M, et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int 2002; 61:1453.10.1046/j.1523-1755.2002.00253.x11918752Search in Google Scholar

22. Herget-Rosenthal S, Marggraf G, Hüsing J, Göring F, Pietruck F, Janssen O, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004; 66:111510.1111/j.1523-1755.2004.00861.x15327406Search in Google Scholar

23. Edelstein CL, Faubel S. Biomarkers in acute kidney injury, in Edelstein CL. Biomarkers in Kidney Disease. Academic Press Elsevier 2011; pp.177-232.10.1016/B978-0-12-375672-5.10005-2Search in Google Scholar

24. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int 2011; 80:806.10.1038/ki.2011.19821697815Search in Google Scholar

25. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006; 290:F517.10.1152/ajprenal.00291.200516174863Search in Google Scholar

26. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 2008; 73:863.10.1038/sj.ki.5002715258690918059454Search in Google Scholar

27. Montseny JJ, Kleinknecht D, Meyrier A, Vanhille P, Simon P, Pruna A, et al. Long-term outcome according to renal histological lesions in 118 patients with monoclonal gammopathies. Nephrol Dial Transplant 1998; 13:1438.10.1093/ndt/13.6.14389641173Search in Google Scholar

28. Nasr SH, Valeri AM, Sethi S, Fidler ME, Cornell LD, Gertz MA, et al. Clinicopathologic correlations in multiple myeloma: a case series of 190 patients with kidney biopsies. Am J Kidney Dis 2012; 59:786.10.1053/j.ajkd.2011.12.02822417785Search in Google Scholar

29. Sanders PW, Booker BB. Pathobiology of cast nephropathy from human Bence Jones proteins. J Clin Invest 1992; 89:630.10.1172/JCI1156294428961737851Search in Google Scholar

30. Huang ZQ, Sanders PW. Localization of a single binding site for immunoglobulin light chains on human Tamm-Horsfall glycoprotein. J Clin Invest 1997; 99:732.10.1172/JCI1192185078579045877Search in Google Scholar

31. Decourt C, Rocca A, Bridoux F, Vrtovsnik F, Preud'homme JL, Cogné M, et al. Mutational analysis in murine models for myeloma-associated Fanconi's syndrome or cast myeloma nephropathy. Blood 1999; 94:3559.10.1182/blood.V94.10.3559.422k10_3559_3566Search in Google Scholar

32. Solomon A, Weiss DT, Kattine AA. Nephrotoxic potential of Bence Jones proteins. N Engl J Med 1991; 324:1845.10.1056/NEJM1991062732426031904132Search in Google Scholar

33. Pirani CL, Silva F, D'Agati V, Chander P, Striker LM. Renal lesions in plasma cell dyscrasias: ultrastructural observations. Am J Kidney Dis 1987; 10:20810.1016/S0272-6386(87)80176-2Search in Google Scholar

34. Ying WZ, Allen CE, Curtis LM, Aaron KJ, Sanders PW. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J Clin Invest 2012; 122:1777.10.1172/JCI46490333697122484815Search in Google Scholar

35. Magee C, Vella JP, Tormey WP, Walshe JJ. Multiple myeloma and renal failure: one center's experience. Ren Fail 1998; 20:597.10.3109/088602298090451529713878Search in Google Scholar

36. Weiss JH, Williams RH, Galla JH, Gottschall JL, Rees ED, Bhathena D, et al. Pathophysiology of acute Bence-Jones protein nephrotoxicity in the rat. Kidney Int 1981; 20:19810.1038/ki.1981.1227289404Search in Google Scholar

37. Batuman V, Verroust PJ, Navar GL, Kaysen JH, Goda FO, Campbell WC, et al. Myeloma light chains are ligands for cubilin (gp 280). Am J Physiol 1998; 275:F246.10.1152/ajprenal.1998.275.2.F2469691015Search in Google Scholar

38. Klassen RB, Allen PL, Batuman V, Crenshaw K, Hammond TG. Light chains are a ligand for megalin. J Appl Physiol 2005; 98:257.10.1152/japplphysiol.01090.200315286052Search in Google Scholar

39. Li M, Balamuthusamy S, Simon EE, Batuman V. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells. Am J Physiol Renal 2008; 295:F82.10.1152/ajprenal.00091.200818448595Search in Google Scholar

40. Guan S, el-Dahr S, Dipp S, Batuman V. Inhibition of Na-K-ATPase activity and gene expression by a myeloma light chain in proximal tubule cells. J Investig Med 1999; 47:496.Search in Google Scholar

41. Diwakar R, Pearson AL, Colville-Nash P, Brunskill NJ, Dockrell ME. The role played by endocytosis in albumin- induced secretion of TGF-1 by proximal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 292:F1464.10.1152/ajprenal.00069.200617213467Search in Google Scholar

42. Dreisbach AW, Batuman V. Low-molecular-weight protein competition for binding sites on renal brush border membranes. Ren Physiol Biochem 1994; 17:287.Search in Google Scholar

43. Verroust PJ, Christensen EI. Megalin and cubilin - the story of two multipurpose receptors unfolds. Nephrol Dial Transplant 2002; 17:1867.10.1093/ndt/17.11.186712401836Search in Google Scholar

44. Li M, Hering-Smith KS, Simon EE, Batuman V. Myeloma light chains induce epithelial-mesenchymal transition in human renal proximal tubule epithelial cells. Nephrol Dial Transplant 2008; 23(3):860.10.1093/ndt/gfm67017933841Search in Google Scholar

45. Ma CX, Lacy MQ, Rompala JF, Dispenzieri A, Rajkumar SV, Greipp PR, et al. Acquired Fanconi syndrome is an indolent disorder in the absence of overt multiple myeloma. Blood 2004; 104:40.10.1182/blood-2003-10-3400Search in Google Scholar

46. Lajoie G, Leung R, Bargman JM. Clinical, biochemical, and pathological features in a patient with plasma cell dyscrasia and Fanconi syndrome. Ultrastruct Pathol 2000; 24:221.10.1080/01913120050176671Search in Google Scholar

47. Mead GP, Carr-Smith HD, Drayson MT, Morgan GJ, Child JA, Bradwell AR. Serum free light chains for monitoring multiple myeloma. Br J Haematol 2004; 126:348.10.1111/j.1365-2141.2004.05045.xSearch in Google Scholar

48. Maldonado JE, Velosa JA, Kyle RA, Wagoner RD, Holley KE, Salassa RM. Fanconi syndrome in adults. A manifestation of a latent form of myeloma. Am J Med 1975; 58:354.10.1016/0002-9343(75)90601-4Search in Google Scholar

49. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood 2006; 108:2520 10.1182/blood-2006-03-00116416794250Search in Google Scholar

50. El Hamel C, Aldigier JC, Oblet C, Laffleur B, Bridoux F, Cogné M. Specific impairment of proximal tubular cell proliferation by a monoclonal κlight chain responsible for Fanconi syndrome. Nephrol Dial Transplant 2012; 27: 4368.10.1093/ndt/gfs26123024220Search in Google Scholar

51. Sanders PW, Herrera GA, Galla JH. Human Bence- Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney Int 1987; 32:851.10.1038/ki.1987.2863123760Search in Google Scholar

52. Batuman V. Proximal tubular injury in myeloma. Contrib Nephrol 2007; 153:87.10.1159/00009676217075225Search in Google Scholar

53. Wang PX, Sanders PW. Immunoglobulin light chains gene rate hydrogen peroxide. J Am Soc Nephrol 2007; 18:1239.10.1681/ASN.200611129917360948Search in Google Scholar

54. Basnayake K, Ying WZ, Wang PX, Sanders PW. Immunoglobulin light chains activate tubular epithelial cells through redox signaling. J Am Soc Nephrol 2010; 21:1165.10.1681/ASN.2009101089315223420558542Search in Google Scholar

55. Ying WZ, Wang PX, Aaron KJ, Basnayake K, Sanders PW. Immunoglobulin light chains activate nuclear factor-kB in renal epithelial cells through a Src-dependent mechanism. Blood 2011; 117:1301.10.1182/blood-2010-08-302505305647321098396Search in Google Scholar

56. Ying WZ, Wang PX, Sanders PW. Pivotal role of apoptosis signal-regulating kinase 1 in monoclonal free light chain-mediated apoptosis. Am J Pathol 2012; 180:41.10.1016/j.ajpath.2011.09.017333833822079929Search in Google Scholar

57. Sarközi R, Perco P, Hochegger K, Enrich J, Wiesinger M, Pirklbauer M, et al. Bortezomib-induced survival signals and genes in human proximal tubular cells. J Pharmacol Exp Ther 2008; 327(3):645.10.1124/jpet.108.14260418776064Search in Google Scholar

58. Barillé S, Collette M, Bataille R, Amiot M. Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 1995; 86:3151.10.1182/blood.V86.8.3151.3151Search in Google Scholar

59. Fattori E, Della Rocca C, Costa P, Giorgio M, Dente B, Pozzi L, et al. Development of progressive kidney damage and myeloma kidney in interleukin-6 transgenic mice. Blood 1994; 83:2570.10.1182/blood.V83.9.2570.2570Search in Google Scholar

60. Sengul S, Zwizinski C, Simon EE, Kapasi A, Singhal PC, Batuman V. Endocytosis of light chains induces cytokines through activation of NF-kappaB in human proximal tubule cells. Kidney Int 2002; 62:1977.10.1046/j.1523-1755.2002.00660.x12427122Search in Google Scholar

61. Sengul S, Zwizinski C, Batuman V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am J Physiol Renal Physiol 2003; 284:F124510.1152/ajprenal.00350.200212582006Search in Google Scholar

62. Lin J, Markowitz GS, Valeri AM, Kambham N, Sherman WH, Appel GB, et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J Am Soc Nephrol 2001; 12:148210.1681/ASN.V127148211423577Search in Google Scholar

63. Nowrousian MR, Brandhorst D, Sammet C, Kellert M, Daniels R, Schuett P, et al. Serum free light chain analysis and urine immunofixation electrophoresis in patients with multiple myeloma. Clin Cancer Res 2005; 11:8706 10.1158/1078-0432.CCR-05-048616361557Search in Google Scholar

ISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology