What about microparticles? Perspectives and practical aspects

Open access


The first description of microparticles dates back to 1967, when Wolf reported platelet membrane fragments in human plasma and called them “platelet dust”. These vesicles were later called microparticles and the knowledge about their characterization and function has advanced since then. The generation of microparticles represents a mechanism of intercellular communication, playing various roles in both physiological and pathological conditions. Besides other multiple roles in pathology such as inflammation, atherogenesis and cancer spreading, platelet-derived microparticles are involved in thrombogenesis. Tissue factor and phosphatidylserine are both exposed on the outer membrane of platelet-derived microparticles, providing catalytic procoagulant surfaces. The evaluation of microparticles may represent a possible investigation and diagnostic tool. Their enumeration and characterization is challenging and flow cytometry remains the most widely used method for the analysis of microparticles. The aim of the authors is to review the most relevant information on the main properties, mechanisms of generation, and clinical relevance of platelet-derived microparticles, since their evaluation is increasingly considered as a diagnostic biomarker.

1. Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004;34:392-401

2. Boilard E, Nigrovic PA, Larabee K, Watts GFM, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen dependent microparticle production. Science. 2010; 327(5965): 580-3

3. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9:581-93

4. del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005; 106:1604-11

5. Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry. 2010; 77A (6):502-14

6. Nieuwland R, Sturk A. Why do cells release vesicles?. Thromb Res. 2010 Feb; 125: S49-51

7. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008; 3:e3694

8. Jonas R, Nilsson A, Balaj L, Hulleman E, van Rijn S, Pegtel DM, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011; 118: 3680-3

9. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64(3): 676-705

10. Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 2010; 8:2358-68

11. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008; 111: 5028-36

12. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 2006; 20:1-26

13. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009; 114: 723-32

14. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009; 8: 2014-18

15. Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009; 101:439-51

16. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967; 13: 269-88

17. Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 1999; 30: 111-42

18. Dignat George F. Microparticles in vascular diseases. Thromb Res 2008; 122; Suppl 1, S55-9

19. Ye R, Ye C, Huang Y, Liu L, Wang S. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis. 2012; 130:253-8

20. Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties. Thromb Res. 2010;125(Suppl 1): S46-8

21. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010; 26(4): e140-e145

22. Flaumenhaft R, Dilks JR, Richardson, Alden E, Patel-Hett SR, Battinelli E, et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009; 113:1112-21

23. Dasgupta SK, Le A, Chavakis, Rumbaut RE, Thiagarajan P. Developmental Endothelial Locus-1 (Del-1) mediates clearance of platelet microparticles by the Endothelium. Circulation. 2012; 125 (13): 1664-72

24. Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost. 2010; 8(11):2358-68

25. Falanga A, Tartari CJ, Marchetti M. Microparticles in tumor progression. Thromb Res 2012; 129; Suppl 1, S132-6

26. Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010; 36:888-906

27. Varon D, Hayon Y, Dashevsky O, Shai E. Involvment of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res 2012; 130: S98-9

28. Castaman G, Yu-Feng L, Rodeghiero F. A bleeding disorder characterized by isolated deficiency of platelet microvesicle generation. Lancet 1996; 347:700-1

29. Castaman G, Yu-Feng L, Battistin E. Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation. Br J Haematol 1997; 96:458-63

30. Zwaal RF, Comfurius P, Bevers EM. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 2004; 1636:119-28

31. Ahn YS. Cell-derived microparticles:‘Miniature envoys with many faces’. J Thromb Hemost 2005; 3:884-7

32. Rank A, Nieuwland R, Delker R, Kohler A, Toth B, Pihusch V, et al. Cellular origin of platelet-derived microparticles in vivo. Thromb Res. 2010; 126: e255-e259

33. Lechner D, Weltermann A. Circulating tissue factorexposing microparticles. Thromb Res. 2008; 122 (Suppl.1):S47-54

34. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3):425-34

35. Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biró E, Nieuwland R, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004; 2:1842-3

36. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007 Dec; 7(12):964-74

37. Castellana D, Totti F, Freyssinet JM. Membrane microvesicles: macromessengers in cancer disease and progression. Thromb Res. 2010; 125 (Suppl 2):S84-8

38. Campello E, Spiezia L, Radu CM, Bulato C, Castelli M, Gavasso S, et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res. 2011; 127(5):473-7

39. Basavaraj MG, Olsen JO, Osterud B, Hansen JB. Differential ability of tissue factor antibody clones on detection of tissue factor in blood cells and microparticles. Thromb Res. 2012; 130:538-14

40. Key NS. Analysis of tissue factor positive microparticles. Thromb Res. 2010; 125:S42-5

41. Ruf W. Tissue factor and cancer. Thromb Res. 2012; S84-7

42. Zwicker JI. Predictive value of tissue factor bearing microparticles in cancer associated thrombosis. Thromb Res.2010; 125(Suppl.2):S89-91

43. Chitlur M, Massicotte MP. The perfect measure of hemostasis: a quest for the holy grail. Thromb Res. 2010; 125(6): 481-2

44. Favaloroa EJ, Lippi G. Coagulation update: what’s new in hemostasis testing? Thromb Res. 2011; 127; Suppl. 2 :S13-S6

45. Siljander PRM. Platelet-derived microparticles - an updated perspective. Thromb Res. 2011; 127:S30-3

46. Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ, Harrison P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang.2009; 96(3):206-12

47. Yuana Y, Oosterkamp TH, Bahatyrova S...Atomic force microscopy: a novel approach to the detection of nano-sized blood microparticles. J Thromb Haemost. 2010; 8(2):315-23

48. Gross PL, Vaezzadeh N. Tissue factor microparticles and haemophilia. Thromb Res.2010; 125:S67-9

49. Dignat-George F, Feyssinet JM, Key NS. Centrifugation is a crucial step impacting microparticle measurement. Platelets. 2009 ; 20(3):225-6

50. Ayers L, Kohler M, Harrison P, Sargent I, Dragovic R, Schaap M, et al. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thromb Res 2011; 127:370-7

51. Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 2012; 10:437-46

52. Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, et al. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost. 2009; 7(1):190-7

53. Trummer A, De Rop C, Tiede A, Ganser A, Eisert R. Isotype controls in phenotyping and quantification of microparticles: A major source of error and how to evade it. Thromb Res 2008; 122:691-700

54. György B, Módos K, Pállinger E, Pálóczi K, Pásztói M, Misják P et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011; 117(4):e39-48

55. Williams JC, Mackman N. MPs or ICs? Blood. 2011; 117: 1101-2

56. Mobarrez F, Antovic J, Egberg N, Hansson M, Jorneskog G, Hultenby K et al. A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res 2010; 125:e110-6

57. Hind E, Heugh S, Ansa-Addo EA, Antwi-Baffour S, Lange S, Inal J. Red cell PMVs, plasma membrane-derived vesicles calling out for standards. Biochem Biophys Res Commun 2010; 399: 465-9

Revista Romana de Medicina de Laborator

Romanian Journal of Laboratory Medicine

Journal Information

IMPACT FACTOR 2018: 0,800
5-year IMPACT FACTOR: 0,655

CiteScore 2017: 0.31

SCImago Journal Rank (SJR) 2018: 0.194
Source Normalized Impact per Paper (SNIP) 2018: 0.306

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 153 14
PDF Downloads 73 65 11