The Effect of Increased Cu Content on Microstructure and Melting of Utilized Sn-0.3Ag-0.7Cu Solder

Open access

Abstract

The influence of increased Cu and Ag contents on the microstructure evolution in the utilized Sn-0.3Ag-0.7Cu (wt. %) solder was studied. The utilized solder was exploited in the wave soldering process at the temperatures of about 260 °C for several days. The samples investigation involved the differential scanning calorimetry, the scanning electron microscopy including the energy dispersive X-ray spectroscopy, and the X-ray diffraction techniques. To predict phase equilibria at various temperatures and temperature dependences of heat capacity, the Thermo-Calc software and the COST531 lead-free solder database were used. The original and the utilized solders were found to be very similar regarding the phase occurrence, but slightly differ from one another in microstructure evolution due to higher bulk contents of Cu in the latter solder. The obtained results contribute to both the better understanding of the microstructure evolution in low-silver Sn-Ag-Cu solders and the determination of compositional limits for those solders used in the wave soldering process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. M. ABTEW G. SELVADURAY. 2000. Mater. Sci. Eng. R 27 pp. 95-141.

  • 2. http://ec.europa.eu/environment/waste/rohs_eee/legis_en.htm. Accessed 12 January 2015.

  • 3. S-K. SEO S. K. KANG D-Y. SHIH H. M. LEE. 2009. Microelectron. Reliab. 49 pp. 288-295.

  • 4. J. SHEN Y. LIU Y. HAN H. GAO CH. WEI Y. YANG. 2006. Trans. Nonferrous Met. Soc. China 16 pp. 59-64.

  • 5. K.S. KIM S.H. HUH K. SUGANUMA. 2002. Mater. Sci. Eng. A 333 pp. 106-114.

  • 6. D. SUH D.W. KIM P. LIU H. KIM J.A. WENINGER CH.M. KUMAR A. PRASAD B.W. GRIMSLEY H.B. TEJADA. 2007. Mater. Sci. Eng. A 460–461 pp. 595–603.

  • 7. K. KANLAYASIRI T. ARIGA. 2010. J. Alloys Compd. 504 L5-L9.

  • 8. K. KANLAYASIRI M. MONGKOLWONGROJN T. ARIGA J. 2009. Alloys Compd. 485 pp. 225-230.

  • 9. N. MOOKAM K. KANLAYASIRI J. 2011. Alloys Compd. 509 pp. 6276-6279.

  • 10. K.-W. MOON W. J. BOETTINGER U. R. KATTNER F. S. BIANCANIELLO C. A. HANDWERKER J. 2000. Electron. Mater. 29 pp. 1122–1236.

  • 11. I. OHNUMA M. MIYASHITA K. ANZAI X.J. LIU H. OHTANI R. KINUMA K. ISHIDA J. 2000. Electron. Mater. 29(10) pp. 1137-1144.

  • 12. M.E. LOOMANS M.E. 2000. Fine Metall. Mater. Trans. A 31A pp. 1155-1162.

  • 13. J. SOPOUŠEK M. PALCUT E. HODÚLOVÁ J. JANOVEC J. 2010. Electron. Mater. 39 pp. 312-317.

  • 14. A. DINSDALE A. WATSON A. KROUPA J. VRESTAL A. ZEMANOVA J. VIZDAL 2008. COST Action 531 – Atlas of Phase Diagrams for Lead-Free Soldering Volume 1 (COST office) pp. 175-181.

  • 15. T. LAURILA V. VUORINEN J.K. KIVILAHTI. 2005. Mater. Sci. Eng. R 49 pp. 1-60.

  • 16. X. SANG K. DU H. YE J. 2009. Alloys Compd. 469 pp.129-136.

  • 17. M. YANG M. LI L. WANG Y. FU J. KIM L. WENIG. 2011. Mater. Lett. 65 pp. 1506-1509.

  • 18. H. – Y. HSIAO C. – C. HU M. – Y. GUO C. CHEN K. N. TU. 2011. Scr. Mater. 65 pp. 907-910.

  • 19. J.W. YOON S-B JUNG J. 2008. Alloys Compd. 458 pp. 200–207.

  • 20. K. NOGITA. 2010. Intermetallics 18 pp. 145-149.

  • 21. K. NOGITA C.M. GOURLAY S.D. MCDONALD Y.Q. WU J. READ Q.F. GU. 2011. Scr. Mater. 65 pp. 922-925.

  • 22. S. CHADA R. A. FOURNELLE W. LAUB D. SHANGGUAN J. 2000. Electron. Mater.29(10) pp. 1214-1221.

  • 23. N. SAUNDERS A.P. MIODOWNIK. 1998. Calculation of Phase Diagrams A Comprehensive Guide. Elsevier Science Ltd. pp. 44-57.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 1
PDF Downloads 82 82 0