3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

Open access

Abstract

The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L−1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

1. GERNÁTOVÁ, M., JANDERKA, P. 2006. Elektrochemická degradácia chlórfenolov. (Electrochemical degradation of chlorophenols). Brno: Chem. Listy 100, pp. 877-881.

2. VLKOVÁ, L., CÍRKVA, V. 2005. Chlorované fenoly a způsoby jejich degradace. (Chlorinated phenols and its degradation processes). Praha: Chem. Listy 99, pp. 125-130.

3. HIND, A. R., BHARGAVA, S. K., GROCOTT, S. C. 1999. The surface chemistry of Bayer process solids: a review. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), pp. 359-374.

4. CENGEL, P. 1996. Niekoľko poznámok k spracovaniu kalov po výrobe hliníka. (Several remarks on the treatment of sludge from aluminium production). In: Životné prostredie, Issue 5. ISSN 0044-4863

5. SCHWARZ, M., LALÍK, V. 2011. Biologické účinky, vylúhovateľnosť a testovanie ekotoxicity odpadového kalu z výroby oxidu hlinitého. (Biological effects, leachability and ecotoxicity testing of sewage sludge from alumina production). Chem. Listy 105. pp. 518-523.

6. WANG, P., LIU, D. 2012. Physical and Chemical Properties of Sintering Red Mud and Bayer Red and the Implications for Benefical Utilization. In: Materials, 5, pp. 1800-1810. ISSN 1996-1944

7. MICHAELI, E. et al. 2012. Skládka priemyselného odpadu lúženca ako príklad environmentálnej záťaže pri bývalej Niklovej hute v Seredi. (Landfill industrial waste from black nickel mud as an example of environmental burden in the former nickel smelter in Sereď). In: Životné prostredie, 46(2), pp. 63-68.

8. MICHAELI, E., BOLTIŽIAR, M. 2010. Vybrané lokality environmentálnych záťaží v Slovenskej republike. (Selected locations of environmental burdens in Slovakia). [cit. 2014-01-03]. Available on the Internet: http://geografia.science.upjs.sk/images/geographia_cassoviensis/articles/GC-2010-4-2/19Michaeli_Boltiziar.pdf

9. SOLDÁNOVÁ, Z., SOLDÁN, M., ČAPLOVIČ, L. 2009. Štúdium kinetiky adsorpcie CrVI červeným kalom a lúžencom. (CrVI adsorption kinetics study of red mud and black nickel mud). In: Waste forum, Issue 2, pp. 58-65.

10. FCPS. Common duckweed. [cit. 2013-10-17]. Available on the Internet: http://www.fcps.edu/islandcreekes/ecology/duckweed.htm

11. ROOK. Lesser duckweed. [cit. 2013-10-17]. Available on the Internet: http://www.rook.org/earl/bwca/nature/aquatics/lemna.html

12. AQUATICPLANTCENTRAL. Lemna minor. [cit. 2013-10-17]. Available on the Internet: http://www.aquaticplantcentral.com/forumapc/plantfinder/details.php?id=131

13. MISSOURI BOTANICAL GARDEN. Lemna minor. [cit. 2014-01-03]. Available on the Internet: http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=a622

14. AQUAPLANT. Common Duckweed. [cit. 2013-10-17]. Available on the Internet: http://aquaplant.tamu.edu/plant-identification/alphabetical-index/common-duckweed/

15. SINGH, S., PRADHAN, S., RAI, L. C. 2000. Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry. Elsevier. Department of Botany, Laboratory of Algal Biology, Banaras Hindu University. Process Biochemistry 36. pp. 175-182.

16. MIRETZKY, P., SARALEGUI, A., CIRELLI, A. F. 2006. Simultaneous heavy metal removal mechanism by dead macrophytes. In: Chemosphere 62, pp. 247-254.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 20
PDF Downloads 31 31 3