Antioxidant therapies in traumatic brain injury: a review

Open access


Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI) treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

1. Petronilho F, Feier G, de Souza B, et al. Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res. 2010;164(2):316-320. doi:10.1016/j.jss.2009.04.031.

2. Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191-1201. doi:10.1016/j.bbi.2012.06.008.

3. Chen W, Qi J, Feng F, et al. Neuroprotective effect of allicin against traumatic brain injury via Akt/endothelial nitric oxide synthase pathway-mediated anti-inflammatory and anti-oxidative activities. Neurochem Int. 2014;68(1):28-37. doi:10.1016/j.neuint.2014.01.015.

4. Hohl a, Gullo Jda S, Silva CC, et al. Plasma levels of oxidative stress biomarkers and hospital mortality in severe head injury: a multivariate analysis. J Crit Care. 2012;27(5):523 e11-e19. doi:10.1016/j.jcrc.2011.06.007.

5. Ahmad A, Crupi R, Impellizzeri D, et al. Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun. 2012;26(8):1310-1321. doi:10.1016/j.bbi.2012.07.021.

6. Otani N, Nawashiro H, Shima K. Pathophysiological Findings of Selective Vulnerability in the Hippocampus After Traumatic Brain Injury. J Exp Clin Med. 2011;3(1):22-26. doi:10.1016/j.jecm.2010.12.003.

7. Sivanandam TM, Thakur MK. Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36(5):1376-1381. doi:10.1016/j.neubiorev.2012.02.013.

8. Luo P, Fei F, Zhang L, Qu Y, Fei Z. The role of glutamate receptors in traumatic brain injury: implications for postsynaptic density in pathophysiology. Brain Res Bull. 2011;85(6):313-320. doi:10.1016/j.brainresbull.2011.05.004.

9. Alvis-miranda HR, Alcala-cerra G, Rubiano M, Ramirez O, Moscote-salazar LR. Therapeutic hypothermia in brain trauma injury : controversies. 2014;2.

10. Feigin VL, Barker-Collo S, Krishnamurthi R, Theadom A, Starkey N. Epidemiology of ischaemic stroke and traumatic brain injury. Best Pract Res Clin Anaesthesiol. 2010;24(4):485-494. doi:10.1016/j.bpa.2010.10.006.

11. Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol. 2010;24(4):495-509. doi:10.1016/j.bpa.2010.10.001.

12. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675-684. doi:10.1016/j.bbadis.2011.10.017.

13. Ohta M, Higashi Y, Yawata T, et al. Attenuation of axonal injury and oxidative stress by edaravone protects against cognitive impairments after traumatic brain injury. Brain Res. 2013;1490:184-192. doi:10.1016/j.brainres.2012.09.011.

14. Cheng ZG, Zhang GD, Shi PQ, Du BS. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury. Asian Pac J Trop Med. 2013;6(4):305-310. doi:10.1016/S1995-7645(13)60061-9.

15. Li R, Liang T, Xu L, Zheng N, Zhang K, Duan X. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Res. 2013;1523:1-9. doi:10.1016/j.brainres.2013.05.046.

16. Xu J, Wang H, Ding K, et al. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway. Free Radic Biol Med. 2014;71C:186-195. doi:10.1016/j.freeradbiomed.2014.03.009.

17. Ansari M a., Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45(4):443-452. doi:10.1016/j.freeradbiomed.2008.04.038.

18. Ponce LL, Navarro JC, Ahmed O, Robertson CS. Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology. 2013;20(1):31-38. doi:10.1016/j.pathophys.2012.02.005.

19. Samuel ELG, Duong MT, Bitner BR, Marcano DC, Tour JM, Kent T a. Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends Biotechnol. 2014:1-5. doi:10.1016/j.tibtech.2014.08.005.

20. Frattalone AR, Ling GSF. Moderate and severe traumatic brain injury: pathophysiology and management. Neurosurg Clin N Am. 2013;24(3):309-319. doi:10.1016/

21. Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: Where do we go from here? Br J Pharmacol. 2011;164(4):1207-1229. doi:10.1111/j.1476-5381.2010.01163.x.

22. Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971-989. doi:10.1016/j.neuroscience.2005.08.030.

23. Levine JM. Traumatic Brain Injury. 2013. doi:10.1038/nrneurol.2011.101.

24. Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol. 2011;7:451-460. doi:10.1038/nrneurol.2011.101.

25. Rocamonde B, Paradells S, Barcia JM, et al. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience. 2012;224:102-115. doi:10.1016/j.neuroscience.2012.08.028.

26. Alfieri A, Srivastava S, Siow RCM, Modo M, Fraser P a, Mann GE. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol. 2011;589(Pt 17) :4125-4136. doi:10.1113/jphysiol.2011.210294.

27. Topic AF, Glasgow S, Edited J, Bagshaw C, Cambridge GB. Proteins : Structure and Function. 2006;(July):953-956.

28. Held P. An Introduction to Reactive Oxygen Species Measurement of ROS in Cells. BioTek Instruments. 2012:1-14.

29. Wang XL, Rainwater DL, VandeBerg JF, Mitchell BD, Mahaney MC. Genetic contributions to plasma total antioxidant activity. Arterioscler Thromb Vasc Biol. 2001;21:1190-1195. doi:10.1161/hq0701.092146.

30. Spranger M, Krempien S, Schwab S, Donneberg S, Hacke W. Superoxide Dismutase Activity in Serum of Patients With Acute Cerebral Ischemic Injury : Correlation With Clinical Course and Infarct Size. Stroke. 1997;28:2425-2428. doi:10.1161/01.STR.28.12.2425.

31. Smith J a., Park S, Krause JS, Banik NL. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int. 2013;62(5):764-775. doi:10.1016/j.neuint.2013.02.013.

32. Semple BD. Early preservation of mitochondrial bioenergetics supports both structural and functional recovery after neurotrauma. Exp Neurol. 2014;261:291-297. doi:10.1016/j.expneurol.2014.07.013.

33. Leker RR, Shohami E. Cerebral ischemia and trauma - Different etiologies yet similar mechanisms: Neuroprotective opportunities. Brain Res Rev. 2002;39(1):55-73.

34. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014;79:298-306. doi:10.1016/j.neuropharm.2013.11.004.

35. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100(1):30-47. doi:10.1016/j.pneurobio.2012.09.003.

36. Yan W, Wang HD, Hu ZG, Wang QF, Yin HX. Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett. 2008;431(2):150-154. doi:10.1016/j.neulet.2007.11.060.

37. Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today. 2008;13(23-24):1082-1089. doi:10.1016/j.drudis.2008.09.006.

38. Miyamoto K, Ohtaki H, Dohi K, et al. Therapeutic time window for edaravone treatment of traumatic brain injury in mice. Biomed Res Int. 2013;2013:379206. doi:10.1155/2013/379206.

39. Chaudhuri P. Edaravon: Caution for use in traumatic brain injury. Experience in 127 patients. Indian J Neurotrauma. 2013;10(1):19-23. doi:10.1016/j.ijnt.2013.04.008.

40. Zhang Y, Xiong Y, Mahmood A, et al. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res. 2009;1294:153-164. doi:10.1016/j.brainres.2009.07.077.

41. Grasso G, Sfacteria A, Meli F, Fodale V, Buemi M, Iacopino DG. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res. 2007;1182(1):99-105. doi:10.1016/j.brainres.2007.08.078.

42. Fernández-Gajardo R, Matamala JM, Carrasco R, Gutiérrez R, Melo R, Rodrigo R. Novel therapeutic strategies for traumatic brain injury: Acute antioxidant reinforcement. CNS Drugs. 2014;28:229-248. doi:10.1007/s40263-013-0138-y.

43. Durmaz R, Deliorman S, Isiksoy S, Uyar R, Erol K, Tel E. Antiproliferative properties of the lazaroids U-83836E and U-74389G on glioma cells in vitro. Pathol Oncol Res. 1999;5:223-228. doi:10.1053/paor.1999.0202.

44. Campo GM, Squadrito F, Campo S, et al. Antioxidant activity of U-83836E, a second generation lazaroid, during myocardial ischemia/reperfusion injury. Free Radic Res. 1997;27:577-590. doi:10.3109/10715769709097861.

45. Mustafa AG, Wang JA, Carrico KM, Hall ED. Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem. 2011;117:579-588. doi:10.1111/j.1471-4159.2011.07228.x.

46. Durmaz R, Kanbak G, Akyüz F, et al. Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci. 2003;30:143-149.

47. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: A natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther. 2008;14:234-247. doi:10.1111/j.1755-5949.2008.00045.x.

48. Dragone T, Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicol Vitr. 2014;28:1126-1135. doi:10.1016/j.tiv.2014.05.005.

49. Zhang F, Liu J, Shi JS. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur J Pharmacol. 2010;636:1-7. doi:10.1016/j.ejphar.2010.03.043.

50. A. MA, L.F.D. S, R. W, A.L. D. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. Biomed Res Int. 2014;2014.

51. Sönmez U, Sönmez A, Erbil G, Tekmen I, Baykara B. Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett. 2007;420:133-137. doi:10.1016/j.neulet.2007.04.070.

52. Singleton RH, Yan HQ, Fellows-Mayle W, Dixon CE. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma. 2010;27:1091-1099. doi:10.1089/neu.2010.1291.

53. Karalis F, Soubasi V, Georgiou T, et al. Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain. Brain Res. 2011;1425:98-110. doi:10.1016/j.brainres.2011.09.044.

54. Quincozes-Santos A, Bobermin LD, Tramontina AC, et al. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: Neuroprotective effect of resveratrol. Toxicol Vitr. 2014;28:544-551. doi:10.1016/j.tiv.2013.12.021.

55. Simonsen U, Christensen FH, Buus NH. The effect of tempol on endothelium-dependent vasodilatation and blood pressure. Pharmacol Ther. 2009;122:109-124. doi:10.1016/j.pharmthera.2009.02.002.

56. Deng-Bryant Y, Singh IN, Carrico KM, Hall ED. Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab. 2008;28:1114-1126. doi:10.1038/jcbfm.2008.10.

57. Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther. 2010;126:119-145. doi:10.1016/j.pharmthera.2010.01.003.

58. Hall ED, Wang J a., Miller DM. Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol. 2012;238(2):176-182. doi:10.1016/j.expneurol.2012.08.024.

59. Ding K, Wang H, Xu J, et al. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med. 2014;73:1-11. doi:10.1016/j.freeradbiomed.2014.04.031.

60. Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: Role of oxidative stresses. Arch Med Res. 2013;44(4):251-258. doi:10.1016/j.arcmed.2013.04.002.

61. Barlow KM, Brooks BL, MacMaster FP, et al. A double-blind, placebo-controlled intervention trial of 3 and 10 mg sublingual melatonin for post-concussion syndrome in youths (PLAYGAME): study protocol for a randomized controlled trial. Trials. 2014;15:271. doi:10.1186/1745-6215-15-271.

62. Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012;130:797-813. doi:10.1016/j.foodchem.2011.08.023.

63. Ates O, Cayli S, Gurses I, et al. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int J Dev Neurosci. 2006;24(6):357-363. doi:10.1016/j.ijdevneu.2006.08.003.

64. Kelso ML, Scheff NN, Scheff SW, Pauly JR. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neurosci Lett. 2011;488(1):60-64. doi:10.1016/j.neulet.2010.11.003.

65. Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible involvement of mTOR pathway. Neurochem Int. 2014;76:23-31. doi:10.1016/j.neuint.2014.06.015.

66. Ding K, Wang H, Xu J, et al. Melatonin stimulated antioxidant enzymes and reduced oxidative stress in experimental traumatic brain injury: The Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med. 2014;73:1-11. doi:10.1016/j.freeradbiomed.2014.04.031.

67. Campolo M, Ahmad A, Crupi R, et al. Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J Endocrinol. 2013;217:291-301. doi:10.1530/JOE-13-0022.

68. Hong Y, Yan W, Chen S, Sun C, Zhang J. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin. 2010;31:1421-1430. doi:10.1038/aps.2010.101.

69. Dash PK, Zhao J, Orsi S a., Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett. 2009;460(2):103-107. doi:10.1016/j.neulet.2009.04.028.

70. Darvekar SR, Elvenes J, Brenne HB, Johansen T, Sjøttem E. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1. PLoS One. 2014;9. doi:10.1371/journal.pone.0085262.

71. Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P. Sulforaphane as a Potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev. 2013. doi:10.1155/2013/415078.

72. Zhao J, Moore AN, Redell JB, Dash PK. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007;27:10240-10248. doi:10.1523/JNEUROSCI.1683-07.2007.

73. Jo C, Kim S, Cho SJ, et al. Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Lett. 2014;588(17):3081-3088. doi:10.1016/j.febslet.2014.06.036.

Romanian Neurosurgery

The Journal of Romanian Society of Neurosurgery

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 181 42
PDF Downloads 65 65 21