Cite

The world energy demand has become higher with the growing population, which has translated into an increase in emission of greenhouse gases into the atmosphere. For this reason, CO2 capture and storage has been undertaken to purify the atmosphere. For storing this CO2, it is necessary to have wells to inject it (deeper than 800 m); moreover, these wells need to have stability over time, and one of the stability aspects is the protection of steel against corrosion. Considering this aspect, the most common steels (focussed on American Petroleum Institute [API] steels) that can be used in an injector well were studied. The best performance was obtained using a high alloy content of Cr and Ni. Furthermore, the most important parameter analysed when corrosion is studied is the test time, which was modelled to stabilise the corrosion rates. The experiments were undertaken after a general review of different studies that investigated the corrosion of steel when in contact with CO2 in the vapour phase and under supercritical conditions.