Open Access

Electrical Resistivity Tomography for Sustainable Groundwater Development in a Complex Geological Area


Cite

Electrical resistivity tomography (ERT) was used for delineating significant subsurface hydrogeological features for sustainable groundwater development in Etioro-Akoko area, Southwestern Nigeria. This study was necessitated by challenges posed on groundwater supplies from wells and boreholes in Etioro-Akoko and the neighbouring fast growing towns and villages. Field data were acquired over the area with ABEM Lund Resistivity Imaging System and were subsequently processed and inverted through RES2DINVx64 software. Results showed four distinct subsurface layers: topsoil, weathered layer, fractured bedrock and fresh bedrock (basal unit). Localised bedrock depressions occasioned by fracturing and deep weathering of less stable bedrock minerals were delineated with resistivity and thickness values ranging from 50 to 650 Ωm and 12 to ---gt--- 25 m, respectively. The localised depressions mirrored uneven bedrock topography and served as the preferential groundwater storage and hydrogeological zones in the area. The two hydrogeological zones significant for groundwater development included overburden-dependent aquifers and fractured dependent bedrock aquifers. It was, therefore, concluded that groundwater storage potential was depended on hydrogeological zones particularly at major localised bedrock depressions where fractures and groundwater recharges/discharges were evident. Wells and boreholes were proposed at bedrock depressions with thickness value not less than 12 and ---gt--- 25 m, respectively, for enhanced groundwater sustainability and quality assurance in the area.