Decarburization of the Carbon Steel C45 During Annealing in Air

Open access

Abstract

In production it is necessary to achieve conditions that lead to the minimum decarburization of a steel product’s surfaces. In this study, the hypo-eutectoid carbon steel C45 was annealed in air in the temperature range Ta = 600–1100 °C. The annealing times were between ta = ½ h and ta = 2 h. Different decarburizations occurred in different microstructures: ferrite–pearlite (Ta = 600 °C and 700 °C, Ta < AC1, no visible decarburization); ferrite–austenite (Ta = 760 °C, AC1 < Ta < AC3, visible decarburization); austenite at the beginning, ferrite– austenite after the incubation period (Ta = 850 °C, AC3 < Ta < 912 °C, visible decarburization); and austenite (Ta= 950 °C and 1100 °C, Ta> 912 °C, visible decarburization and overheating of steel). The edges were more prone to decarburization and to overheating. Stress relieving, normalizing and annealing before quenching of the steel C45 can be carried out in air.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Schumann H. (1983): Metallografie12. Auflage. Leibzig: WEB Deutscher Verlag für Grundstoffindustrie 608 p.

  • [2] Kveder A. (1972): Metalurški priročnik (Handbook of Metallurgy) Ljubljana: Tehniška založba Slovenije 1471 p.

  • [3] Mardon C. (1998): The austenitization and decarburization of high silicon spring steel. PhD Thesis Christchurch: University of Canterbury; 103 p.

  • [4] Zhang C.L. Zhou L.I. Liu Y.Z. (2013): Surface decarburization characteristics and relation decarburized types and heating temperature of spring steel 60Si2MnA. International Journal of Minerals Metallurgy and Materials 20(8) pp. 720–724.

  • [5] Liu Y. Zhang W. Tong Q. Wang L. (2014): Effects of Temperature and Oxygen Concentration on the Characteristics of Decarburization of 55SiCr Spring Steel. ISIJ International 54(8) pp. 1920–1926.

  • [6] Zorc M. (2016): Decarburization of non-alloy medium carbon steel during annealing in an air atmosphere (in Slovenian) Diploma Thesis Ljubljana: University of Ljubljana Faculty of Natural sciences and Engineering - Department of Materials and Metallurgy; 41 p.

  • [7] Mayott S.W. (2010): Analysis of the Effect of Reduced Oxygen Atmospheres on the Decarburization Depth of 300M Alloy Steel Master of Science Thesis New York Rensselaer Polytechnic Institute Department of Materials Science and Engineering.

  • [8] Naumann F.K. (1976): Das Buch der Schadensfälle. Stuttgart Germany: Dr. Riederer-Verlag GmbH 481 p.

  • [9] Vander Voort G.F. (2015): Understanding and Measuring Decarburization. Advanced materials & Processes 173(2) pp. 22–27.

  • [10] Jaason K. Peetsalu P. Saarna M. Kulu P. Beilmann J. (2016): Decarburization Effect on Hardened Strip Fastening Components. Materials Science 22(1) pp.148–152.

  • [11] Vodopivec F. (2002). Kovine in zlitine (Metals and Alloys) Ljubljana: Institute of Metals and Technology 474 p.

  • [12] Zorc B. Nagode A. Kosec B. Kosec L. (2013): Elevator chain wheel shaft break analysis. Case Studies in Engineering Failure Analysis 1(2) pp. 115–119.

  • [13] Atlas zur Wärmebehandlung der Stähle auf CD-ROM (2009); Düsseldorf: Verlag Stahleisen GmbH.

  • [14] Chen R.Y. Yuen W.Y.D. (2003): Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of Metals 59(5/6) pp. 433–468.

  • [15] De Cooman B.C. Speer J.G. (2011): Fundamentals of Steel Product Physical Metallurgy Englewood: AIST 642 p.

  • [16] Grzesik Z. (2003): Thermodynamics of Gaseous Corrosion. In ASM Handbook Vol. 13A - Corrosion: Fundamentals Testing and Protection Cramer S.D. Covino Jr. B.S. (Eds.) Ohio: ASM International Materials Park pp. 90–96.

  • [17] Billings G.A. (1966): Oxidation and Decarburization Kinetics of Iron-Carbon Alloys in Carbon Dioxide-Carbon Monoxide Atmosphere Master of Science Thesis Hamilton Ontario: McMaster University; 120 p.

  • [18] Baud J. Ferrier A. Manenc J. Bénard J. (1975): The oxidation and decarburizing of Fe-C alloys in air and the influence of relative humidity. Oxidation of Metals 9(1) pp. 69–97.

  • [19] Sebenji F. Hakl L. (1980). Corrosion of metals in theory and practice (in Serbian) Belgrade: Tehnička knjiga 226 p.

  • [20] Stratton P.F. (1984): Living with Furnace Atmosphere Contamination. Metal Science and Heat Treatment 2 pp. 41–48.

  • [21] Parrish G. (1999): Carburizing-Microstructures and properties. Ohio: ASM International: Materials Park 247 p.

  • [22] Mladenović S. Petrović M. Rikovski G. (1975). Handbook of chemical technology Corrosion and protection of materials (in Serbian) Belgrade: IRO “RAD” 484 p.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 6
PDF Downloads 272 272 7