Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS

Open access

Abstract

When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alt H. & Godau M. (1995). Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(1-2) 75-91. doi:

    • Crossref
    • Export Citation
  • Arnaud-Fassetta G. Carcaud N. Castanet C. & Salvador P.-G. (2010). Fluviatile palaeoenvironments in archaeological context: Geographical position methodological approach and global change - Hydrological risk issues. Quaternary International 216(1-2) 93-117. doi:

    • Crossref
    • Export Citation
  • Bandemer H.-W. (2006). Mathematics of Uncertainty - Ideas Methods Application Problems. Springer. doi:

    • Crossref
    • Export Citation
  • Bátora J. & Tóth P. (2014). Settlement Strategies in the Early Bronze Age in South-Western Slovakia. In: Kienlin T. Valde-Nowak P. Korczynska M. Cappenberg K. & Ociepka J. (eds.) Settlement Communication and Exchange around the Western Carpathians Archaeopress 325-340.

  • Bolten A. Bubenzer O. & Darius F. (2006). A digital elevation model as a base for the reconstruction of Holocene land-use potential in arid regions. Geoarchaeology 21(7) 751-762. doi:

    • Crossref
    • Export Citation
  • Chen C.-C. & Knoblock C. A. (2008). Conflation of Geospatial Data. In: Encyclopedia of GIS S. Shekar and H. Xiong Eds. Springer US Boston ch. Conflation 133-140. doi:

    • Crossref
    • Export Citation
  • Cobb M. A. Chung M. J. Foley III H. Petry F. E. Shaw K. B. & Miller H. V. (1998). No Title. Geoinformatica 2(1) 7-35. doi:

    • Crossref
    • Export Citation
  • Dhar M. (2013). Cardinality of Fuzzy Sets: An Overview. International Journal of Energy Information and Communications 1 15-22.

  • Dice L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology 26(3) 297-302. doi:

    • Crossref
    • Export Citation
  • Ewing G. M. (1985). Calculus of Variations with Applications. Dover Publications New York.

  • Ford A. Clarke K. C. & Raines G. (2009). Modeling Settlement Patterns of the Late Classic Maya Civilization with Bayesian Methods and Geographic Information Systems. Annals of the Association of American Geographers 99(3) 1-25. doi:

    • Crossref
    • Export Citation
  • Gillings M. (1995). GIS and the Tisza Flood-Plain: Landscape and Settlement Evolution in North-Eastern Hungary. In: The Impact of Geographic Information Systems on Archaeology: a European Perspective G. Lock and Z. Stancic Eds. Taylor & Francis New York 67-84.

  • Goodchild M. F. & Hunter G. J. (1997) A simple positional accuracy measure for linear features. International Journal of Geographical Information Science 11(3) 299-306. doi:

    • Crossref
    • Export Citation
  • Harrower M. J. (2009). Is the hydraulic hypothesis dead yet? Irrigation and social change in ancient Yemen. World Archaeology 41(1) 58-72. doi:

    • Crossref
    • Export Citation
  • Harrower M. J. (2010). Geographic Information Systems (GIS) hydrological modeling in archaeology: an example from the origins of irrigation in Southwest Arabia (Yemen). Journal of Archaeological Science 37(7) 1447-1452. doi:

    • Crossref
    • Export Citation
  • Hausdorff F. (1914). Grundzüge der Mengenlehre. Veit Leipzig.

  • Heuvelink G. B. M. & Brown J. D. (2016). Uncertain Environmental Variables in GIS. In: Encyclopedia of GIS S. Shekar and H. Xiong Eds. Springer International Publishing ch. Uncertain 1-9. doi:

    • Crossref
    • Export Citation
  • Jaccard P. (1901). Étude comparative de la distribution orale dans une portion des Alpes et des Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37 547-579.

  • Koukoletsos T. Haklay M. & Ellul C. (2012). Assessing data completeness of VGI through an automated matching procedure for linear data. Transactions in GIS 16(4) 477-498. Doi: 10.1111/j.1467-9671.2012.01304.x

  • Lieskovský T. (2011). Využitie geografických informačných systémov v predikčnom modelovaní v archeológii (Unpublished doctoral dissertation) Slovak University of Technology.

  • Longley P. A. Goodchild M. F. Maguire D. J. & Rhind D. W. (1999). Geographical Information Systems and Science. John Willey &Sons.

  • Periman R. D. (2005). Modeling landscapes and past vegetation patterns of New Mexico’s Rio del Oso Valley. Geoarchaeology 20(2) 193-210. doi:

    • Crossref
    • Export Citation
  • Petry F. E. Robinson V. B. & Cobb M. A.(2005). Fuzzy Modeling with Spatial Information for Geographic Problems. Springer Berlin Heidelberg Berlin Heidelberg. doi:

    • Crossref
    • Export Citation
  • Pilesjö P. & Hasan A. (2014) A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model. Transactions in GIS 18 108-124. doi:

    • Crossref
    • Export Citation
  • Samal A. Seth S. & Cueto K. (2004). A feature-based approach to conflation of geospatial sources. International Journal of Geographical Information Science 18(5) 459-489. doi:

    • Crossref
    • Export Citation
  • Schneider M. (2008). Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases. In: Handbook of Research on Fuzzy Information Processing in Databases. IGI Global 490-515. doi:

    • Crossref
    • Export Citation
  • Seth S. & Samal A. (2016). Conflation of Features. In: Encyclopedia of GIS S. Shekar and H. Xiong Eds. Springer International Publishing 1-7. doi:

    • Crossref
    • Export Citation
  • Sørensen T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5(4) 1-34.

  • Tang X. Fang Y. & Kainz W. (2006). Fuzzy Topological Relations between Fuzzy Spatial Objects. In: Fuzzy Systems and Knowledge Discovery Proceedings vol. 4223 324-333. doi:

    • Crossref
    • Export Citation
  • Toomanian A. Harrie L. Mansourian A. & Pilesjö P. (2013). Automatic integration of spatial data in viewing services. Journal of Spatial Information Science 6 43-58. doi:

    • Crossref
    • Export Citation
  • Van Leusen M. Van Leusen M. Deeben J. Deeben J. Hallewas D. Hallewas D. Kamermans H. Kamermans H. Verhagen P. Verhagen P. Zoetbrood P. & Zoetbrood P. (2005). A Baseline for Predictive Modelling in the Netherlands. Predictive Modelling for Archaeological Heritage Managment: A research agenda Amersfoort 25-92.

  • Walter V. & Fritsch D. (1999). Matching spatial data sets: a statistical approach. International Journal of Geographical Information Science 13(5) 445-473. doi:

    • Crossref
    • Export Citation
  • Wen-June W. (1997). New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems 85(3) 305-309. doi:

    • Crossref
    • Export Citation
  • Wilson J. P. Aggett G. Yongxin D. & Lam C. S. (2008). Water in the Landscape: A Review of Contemporary Flow Routing Algorithms. In: Advances in Digital Terrain Analysis. Springer Berlin Heidelberg Berlin Heidelberg 213-236. doi:

    • Crossref
    • Export Citation
  • Wygralak M. (1983). Fuzzy inclusion and fuzzy equality of two fuzzy subsets fuzzy operations for fuzzy subsets. Fuzzy Sets and Systems 10(1-3) 157-168. doi:

    • Crossref
    • Export Citation
  • Young V. R. (1996). Fuzzy subsethood. Fuzzy Sets and Systems 77(3) 371-384. doi:

    • Crossref
    • Export Citation
  • Zadeh L. (1965). Fuzzy sets. Information and Control 8(3) 338-353. doi:

    • Crossref
    • Export Citation
  • Zeng W. & Li H. (2006). Inclusion measures similarity measures and the fuzziness of fuzzy sets and their relations. International Journal of Intelligent Systems 21 639-653. doi:

    • Crossref
    • Export Citation
  • Zhang J. & Goodchild M. F. (2002). Uncertainty in Geographical Information. Taylor & Francis. doi:

    • Crossref
    • Export Citation
Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 154 6
PDF Downloads 107 74 3