Mild hyperthermia influence on Herceptin® properties

Jean-Michel Escoffre 1 , Roel Deckers 1 , Noboru Sasaki 1 , Clemens Bos 1  and Chrit Moonen 1
  • 1 Imaging Division, UMC Utrecht, Utrecht, the Netherlands


Background. Mild hyperthermia (mHT) increases the tumor perfusion and vascular permeability, and reduces the interstitial fluid pressure, resulting in better intra-tumoral bioavailability of low molecular weight drugs. This approach is potentially also attractive for delivery of therapeutic macromolecules, such as antibodies. Here, we investigated the effects of mHT on the stability, immunological and pharmacological properties of Herceptin®, a clinically approved antibody, targeting the human epidermal growth factor receptor 2 (HER-2) overexpressed in breast cancer.

Results. Herceptin® was heated to 37°C (control) and 42°C (mHT) for 1 hour. Formation of Herceptin® aggregates was measured using Nile Red assay. mHT did not result in additional Herceptin® aggregates compared to 37°C, showing the Herceptin® stability is unchanged. Immunological and pharmacological properties of Herceptin® were evaluated following mHT using HER-2 positive breast cancer cells (BT-474). Exposure of Herceptin® to mHT preserved recognition and binding affinity of Herceptin® to HER-2. Western-blot and cell proliferation assays on BT-474 cells showed that mHT left the inhibitory activities of Herceptin® unchanged.

Conclusions. The stability, and the immunological and pharmacological properties of Herceptin® are not negatively affected by mHT. Further in-vivo studies are required to evaluate the influence of mHT on intra-tumoral bioavailability and therapeutic effectiveness of Herceptin®.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ferlay J, Steliarova-Foucher E , Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49: 1374-403.

  • 2. Arteaga CL, Sliwkowski MX, Osb orne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012; 9: 16-32.

  • 3. Eroles P, Bosch A, Perez-Fidal go JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 2012; 38: 698-707.

  • 4. Yardley DA, Tripathy D, Brufsk y AM, Rugo HS, Kaufman PA, Mayer M, et al. Long-term survivor characteristics in HER2-positive metastatic breast cancer from registHER. Br J Cancer 2014; 110: 2756-64.

  • 5. Hudis CA. Trastuzumab-mechanis m of action and use in clinical practice. N Engl J Med 2007; 357: 39-51.

  • 6. Sliwkowski MX, Mellman I. Anti body therapeutics in cancer. Science 2013; 341: 1192-8.

  • 7. Scaltriti M, Verma C, Guzman M , Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009; 28: 803-14.

  • 8. Klapper LN, Waterman H, Sela M , Yarden Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 2000; 60: 3384-8.

  • 9. Clynes RA, Towers TL, Presta L G, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443-6.

  • 10. Barok M, Isola J, Palyi-Krekk Z, Nagy P, Juhasz I, Vereb G, et al. Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 2007; 6: 2065-72.

  • 11. Izumi Y, Xu L, di Tomaso E, Fu kumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416: 279-80.

  • 12. Li L, ten Hagen TL, Bolkestein M, Gasselhuber A, Yatvin J, van Rhoon GC, et al. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 2013; 167: 130-7.

  • 13. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 2001; 19: 2587-95.

  • 14. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, Alanko T, Kataja V, Asola R, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006; 354: 809-20.

  • 15. Friedl J, Turner E, Alexander HR, Jr. Augmentation of endothelial cell monolayer permeability by hyperthermia but not tumor necrosis factor: evidence for disruption of vascular integrity via VE-cadherin down-regulation. Int J Oncol 2003; 23: 611-6.

  • 16. Horton JK, Halle J, Ferraro M, Carey L, Moore DT, Ollila D, et al. Radiosensitization of chemotherapy-refractory, locally advanced or locally recurrent breast cancer with trastuzumab: a phase II trial. Int J Radiat Oncol Biol Phys 2010; 76: 998-1004.

  • 17. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2003; 2: 1113-20.

  • 18. Tarantini L, Cioffi G, Gori S, Tuccia F, Boccardi L, Bovelli D, et al. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J Card Fail 2012; 18: 113-9.

  • 19. Jain RK. Physiological barrier s to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990; 50: 814s-9s.

  • 20. Jain RK. Vascular and intersti tial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9: 253-66.

  • 21. Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988; 48: 7022-032.

  • 22. Baker JH, Lindquist KE, Huxham LA, Kyle AH, Sy JT, Minchinton AI. Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin Cancer Res 2008; 14: 2171-9.

  • 23. Cho CH, Sreenivasa G, Plotkin M, Pietsch H, Wust P, Ludemann L. Tumour perfusion assessment during regional hyperthermia treatment: comparison of temperature probe measurement with H(2)(15)O-PET perfusion. Int J Hyperthermia 2010; 26: 404-11.

  • 24. Song CW. Effect of local hyper thermia on blood flow and microenvironment: a review. Cancer Res 1984; 44: 4721s-30s.

  • 25. Song CW, Park H, Griffin RJ. I mprovement of tumor oxygenation by mild hyperthermia. Radiat Res 2001; 155: 515-28.

  • 26. Kirui DK, Koay EJ, Guo X, Cris tini V, Shen H, Ferrari M. Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 2014; 10: 1487-96.

  • 27. Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 2001; 61: 3027-32.

  • 28. Cope DA, Dewhirst MW, Friedman HS, Bigner DD, Zalutsky MR. Enhanced delivery of a monoclonal antibody F(ab’)2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res 1990; 50: 1803-9.

  • 29. Kong G, Dewhirst MW. Hyperther mia and liposomes. Int J Hyperthermia 1999; 15: 345-70.

  • 30. Gridley DS, Ewart KL, Cao JD, Stickney DR. Hyperthermia enhances localization of 111In-labeled hapten to bifunctional antibody in human colon tumor xenografts. Cancer Res 1991; 51: 1515-20.

  • 31. Kinuya S, Yokoyama K, Hiramats u T, Tega H, Tanaka K, Konishi S, et al. Combination radioimmunotherapy with local hyperthermia: increased delivery of radioimmunoconjugate by vascular effect and its retention by increased antigen expression in colon cancer xenografts. Cancer Lett 1999; 140: 209-18.

  • 32. Wong JY, Mivechi NF, Paxton RJ , Williams LE, Beatty BG, Beatty JD, et al. The effects of hyperthermia on tumor carcinoembryonic antigen expression. Int J Radiat Oncol Biol Phys 1989; 17: 803-8.

  • 33. Demeule B, Gurny R, Arvinte T. Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm 2007; 329: 37-45.

  • 34. Cudd A, Arvinte T, Das RE, Chi nni C, MacIntyre I. Enhanced potency of human calcitonin when fibrillation is avoided. J Pharm Sci 1995; 84: 717-9.

  • 35. Pickl M, Ries CH. Comparison o f 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 2009; 28: 461-8.

  • 36. Hosono MN, Hosono M, Endo K, U eda R, Onoyama Y. Effect of hyperthermia on tumor uptake of radiolabeled anti-neural cell adhesion molecule antibody in small-cell lung cancer xenografts. J Nucl Med 1994; 35: 504-9.

  • 37. Kramer-Marek G, Gijsen M, Kies ewetter DO, Bennett R, Roxanis I, Zielinski R, et al. Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med 2012; 53: 629-37.

  • 38. Gijsen M, King P, Perera T, Pa rker PJ, Harris AL, Larijani B, et al. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol 2010; 8: e1000563.

  • 39. Ishikawa T, Ito T, Endo R, Nak agawa K, Sawa E, Wakamatsu K. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biol Pharm Bull 2010; 33: 1413-7.

  • 40. Landon CD, Park JY, Needham D, Dewhirst MW. Nanoscale Drug Delivery and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer. Open Nanomed J 2011; 3: 38-64.

  • 41. Goldberg SN, Gazelle GS, Muell er PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 2000; 174: 323-31.

  • 42. Bucciantini M, Giannoni E, Chi ti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416: 507-11.

  • 43. Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant 2005; 20 (Suppl 6): vi3-9.

  • 44. Hauck ML, Dewhirst MW, Zalutsky MR. The effects of clinically relevant hyperthermic temperatures on the kinetic binding parameters of a monoclonal antibody. Nucl Med Biol 1996; 23: 551-7.

  • 45. Hauck ML, Larsen RH, Welsh PC, Zalutsky MR. Cytotoxicity of alpha-particleemitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia. Br J Cancer 1998; 77: 753-9.

  • 46. Koay DC, Zerillo C, Narayan M, Harris LN, DiGiovanna MP. Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: induction of apoptosis by retinoid/trastuzumab combinations. Breast Cancer Res 2010; 12: R62.

  • 47. Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 2013; 169: 112-25.

  • 48. Hauck ML, Zalutsky MR. Enhanced tumour uptake of radiolabelled antibodies by hyperthermia: Part I: Timing of injection relative to hyperthermia. Int J Hyperthermia 2005; 21: 1-11.

  • 49. Escoffre JM, Novell A, de Smet M, Bouakaz A. Focused ultrasound mediated drug delivery from temperature-sensitive liposomes: in-vitro characterization and validation. Phys Med Biol 2013; 58: 8135-51.


Journal + Issues