Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

Open access

Abstract

Background. Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. Materials and methods. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM.

Results. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM.

Conclusions. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1 Van Meir EG Hadjipanayis CG Norden AD Shu H-K Wen PY Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60: 166-93.

  • 2 Ardebili SY Zajc I Gole B Campos B Herold-Mende C Drmota S et al. CD133/prominin1 is prognostic for GBM patient’s survival but inversely correlated with cysteine cathepsins’ expression in glioblastoma derived spheroids. Radiol Oncol 2011; 45: 102-15.

  • 3 Kalinina J Peng J Ritchie JC Van Meir EG. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol 2011; 13: 926-42.

  • 4 Martens T Matschke J Müller C Riethdorf S Balabanov S Westphal M et al. Skeletal spread of an anaplastic astrocytoma (WHO grade III) and preservation of histopathological properties within metastases. Clin Neurol Neurosurg 2013; 115: 323-8.

  • 5 Xu BJ An Q a Srinivasa Gowda S Yan W Pierce L a Abel TW et al. Identification of blood protein biomarkers that aid in the clinical assessment of patients with malignant glioma. Int J Oncol 2012; 40: 1995-2003.

  • 6 Reynés G Vila V Martín M Parada A Fleitas T Reganon E et al. Circulating markers of angiogenesis inflammation and coagulation in patients with glioblastoma. J Neurooncol 2011; 102: 35-41.

  • 7 Gupta MK Polisetty R V Ramamoorthy K Tiwary S Kaur N Uppin MS et al.

  • Secretome analysis of Glioblastoma cell line - HNGC-2. Mol Biosyst 2013; 9: 1390-400.

  • 8 Graner MW Alzate O Dechkovskaia AM Keene JD Sampson JH Mitchell DA et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 2009; 23: 1541-57.

  • 9 Motaln H Gruden K Hren M Schichor C Primon M Rotter A et al. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant 2012; 21: 1529-45.

  • 10 Strojnik T Šmigoc T Lah T. Neurosurgery Prognostic values of erythrocyte sedimentation rate and C-reactive protein in the blood of glioma patients. Anticancer Res 2014; 34: 339-47.

  • 11 Sato Y Honda Y Asoh T Oizumi K Ohshima Y Honda E. Cerebrospinal fluid ferritin in glioblastoma: evidence for tumor synthesis. J Neurooncol 1998; 40: 47-50.

  • 12 Com E Clavreul A Lagarrigue M Michalak S Menei P Pineau C. Quantitative proteomic Isotope-Coded Protein Label (ICPL) analysis reveals alteration of several functional processes in the glioblastoma. J Proteomics 2012; 75: 3898-913.

  • 13 Fang X Wang C Balgley BM Zhao K Wang W He F et al. Targeted Tissue Proteomic Analysis of Human Astrocytomas. J Proteome Res 2012; 11: 3937-46.

  • 14 Carlsson A Persson O Ingvarsson J Widegren B Salford L Borrebaeck CAK et al. Plasma proteome profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients. Proteomics Clin Appl 2010; 4: 591-602.

  • 15 Gautam P Nair SC Gupta MK Sharma R Polisetty RV Uppin MS et al. Proteins with altered levels in plasma from glioblastoma patients as revealed by iTRAQ-based quantitative proteomic analysis. PLoS One 2012; 7: e46153.

  • 16 Elstner A Stockhammer F Nguyen-Dobinsky T-N Nguyen QL Pilgermann I Gill A et al. Identification of diagnostic serum protein profiles of glioblastoma patients. J Neurooncology 2011; 102: 71-80.

  • 17 Gollapalli K Ray S Srivastava R Renu D Singh P Dhali S et al. Investigation of serum proteome alterations in human glioblastoma multiforme. Proteomics 2012; 12: 2378-90.

  • 18 Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 2004; 3: 367-78.

  • 19 Liu T Qian W-J Mottaz HM Gritsenko MA Norbeck AD Moore RJ et al. Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics 2006; 5: 2167-74.

  • 20 Gruden K Hren M Herman A Blejec A Albrecht T Selbig J et al. A “crossomics” study analysing variability of different components in peripheral blood of healthy caucasoid individuals. PLoS One 2012; 7: e28761.

  • 21 Bolstad BM Irizarry R a Åstrand M Speed TP Astrand M. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185-93.

  • 22 Huang DW Sherman BT Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1-13.

  • 23 Kraus JA Felsberg J Tonn JC Reifenberger G Pietsch T. Molecular genetic analysis of the TP53 PTEN CDKN2A EGFR CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 2002; 28: 325-33.

  • 24 Sonoda Y Kumabe T Watanabe M Nakazato Y Inoue T Kanamori M et al. Long-term survivors of glioblastoma: clinical features and molecular analysis. Acta Neurochir (Wien) 2009; 151: 1349-58.

  • 25 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.

  • 26 Hamelinck D Zhou H Li L Verweij C Dillon D Feng Z et al. Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell proteomics MCP 2005; 4: 773-84.

  • 27 Takenaka K Kanaho Y Hara A Zhang W Ando T Sakai N et al. A guanine nucleotide-binding protein in human astrocytoma. Neurol Res 1990; 12: 223-5.

  • 28 Kirla RM Haapasalo HK Kalimo H Salminen EK. Low expression of p27 indicates a poor prognosis in patients with high-grade astrocytomas. Cancer 2003; 97: 644-8.

  • 29 Huang P Rani MRS Ahluwalia MS Bae E Prayson RA Weil RJ et al. Endothelial expression of TNF receptor-1 generates a proapoptotic signal inhibited by integrin α6β1 in glioblastoma. Cancer Res 2012; 72: 1428-37.

  • 30 Berindan-Neagoe I Chiorean R Braicu C Florian IS Leucuta D Crisan D et al. Quantitative mRNA expression of genes involved in angiogenesis coagulation and inflammation in multiforme glioblastoma tumoral tissue versus peritumoral brain tissue: lack of correlation with clinical data. Eur Cytokine Netw 2012; 23: 45-55.

  • 31 Stark AM Doukas A Hugo H-H Mehdorn HM. The expression of mismatch repair proteins MLH1 MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res 2010; 32: 816-20.

  • 32 Stojic J Hagemann C Haas S Herbold C Kühnel S Gerngras S et al. Expression of matrix metalloproteinases MMP-1 MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 2008; 60: 40-9.

  • 33 Liumbruno G D’Alessandro A Grazzini G Zolla L. Blood-related proteomics. J Proteomics 2010; 73: 483-507.

  • 34 Tu C Rudnick PA Martinez MY Cheek KL Stein SE Slebos RJC et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res 2010; 9: 4982-91.

  • 35 Echan LA Tang H-Y Ali-Khan N Lee K Speicher DW. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005; 5: 3292-303.

  • 36 Cazet A Lefebvre J Adriaenssens E Julien S Bobowski M Grigoriadis A et al. GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 2010; 8: 1526-35.

  • 37 Su AI Wiltshire T Batalov S Lapp H Ching KA Block D et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101: 6062-7.

  • 38 Hanahan D Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.

  • 39 Nabika S Kiya K Satoh H Mizoue T Kondo H Katagiri M et al. Prognostic significance of expression patterns of EGFR family p21 and p27 in highgrade astrocytoma. Hiroshima J Med Sci 2010; 59: 65-70.

  • 40 Shen A Wang Y Zhao Y Zou L Sun L Cheng C. Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 2009; 65: 153-9; discussion 159-60.

  • 41 Correia RL Oba-Shinjo SM Uno M Huang N Marie SKN. Mitochondrial DNA depletion and its correlation with TFAM TFB1M TFB2M and POLG in human diffusely infiltrating astrocytomas. Mitochondrion 2011; 11: 48-53.

  • 42 Hagedorn M Delugin M Abraldes I Allain N Belaud-Rotureau M-A Turmo M et al. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients. Cell Div 2007; 2: 9.

  • 43 Liu X Valentine SJ Plasencia MD Trimpin S Naylor S Clemmer DE. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 2007; 18: 1249-64.

  • 44 Nakamura K Kodera H Akita T Shiina M Kato M Hoshino H et al. De Novo mutations in GNAO1 encoding a Gαo subunit of heterotrimeric G proteins cause epileptic encephalopathy. Am J Hum Genet 2013; 93: 496-505.

  • 45 Galli C Meucci O Scorziello A Werge TM Calissano P Schettini G. Apoptosis in cerebellar granule cells is blocked by high KCl forskolin and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 1995; 15: 1172-9.

  • 46 Valerie NCK Dziegielewska B Hosing AS Augustin E Gray LS Brautigan DL et al. Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol 2013; 85: 888-97.

  • 47 Liu Z Zhang J Wu L Liu J Zhang M. Overexpression of GNAO1 correlates with poor prognosis in patients with gastric cancer and plays a role in gastric cancer cell proliferation and apoptosis. Int J Mol Med 2014; 33: 589-96.

  • 48 Pei X Zhang J Wu L Lü B Zhang X Yang D et al. The down-regulation of GNAO1 and its promoting role in hepatocellular carcinoma. Biosci Rep 2013; 33: e00069.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.846
5-year IMPACT FACTOR: 1.923

CiteScore 2018: 1.94

SCImago Journal Rank (SJR) 2018: 0.651
Source Normalized Impact per Paper (SNIP) 2018: 0.867

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 195 11
PDF Downloads 148 98 5