Improvements to exact Boltzmann sampling using probabilistic divide-and-conquer and the recursive method

Open access


We demonstrate an approach for exact sampling of certain discrete combinatorial distributions, which is a hybrid of exact Boltzmann sampling and the recursive method, using probabilistic divide-and-conquer (PDC). The approach specializes to exact Boltzmann sampling in the trivial setting, and specializes to PDC deterministic second half in the first non-trivial application. A large class of examples is given for which this method broadly applies, and several examples are worked out explicitly.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] D. J. Aldous Exchangeability and related topics in: École d'été de probabilités de Saint-Flour XIII-1983 Lecture Notes in Math. 1117 (1985) 1-198.

  • [2] L. Alonso Uniform generation of a Motzkin word Theoret. Comput. Sci. 134 (1994) 529-536.

  • [3] R. Arratia and S. DeSalvo Probabilistic divide-and-conquer: a new exact simulation method with integer partitions as an example Combin. Probab. Comput. 25 (2016) 324-351.

  • [4] R. Arratia and S. Tavare Independent process approximations for random combinatorial structures Adv. Math. 104 (1994) 90-154.

  • [5] E. A. Bender and J. R. Goldman Enumerative uses of generating functions Indiana Univ. Math. J. 20 (1970/1971) 753-765.

  • [6] I. Bezáková A. Sinclair D. Štefankovič and E. Vigoda Negative examples for sequential importance sampling of binary contingency tables in: Algorithms-ESA 2006 Springer 2006 pp. 136-147.

  • [7] L. V. Bogachev Unified derivation of the limit shape for multiplicative ensembles of random integer partitions with equiweighted parts Random Structures Algorithms 47 (2015) 227-266.

  • [8] N. G. De Bruijn Asymptotic methods in analysis volume 4 Courier Dover Publications 1970.

  • [9] A. Dembo A. Vershik and O. Zeitouni Large deviations for integer partitions Institut des Hautes Etudes Scientifiques [IHES] 1998.

  • [10] A. Denise and P. Zimmermann Uniform random generation of decomposable structures using floating-point arithmetic Theoret. Comput. Sci. 218 (1999) 233-248.

  • [11] S. DeSalvo Probabilistic divide-and-conquer: deterministic second half Adv. in Appl. Math. to appear.

  • [12] L. Devroye Nonuniform random variate generation Handbooks Oper. Res. Management Sci. 13 (2006) 83-121.

  • [13] P. Duchon P. Flajolet G. Louchard and G. Schaeffer Boltzmann samplers for the random generation of combinatorial structures Combin. Probab. Comput. 13 (2004) 577-625.

  • [14] P. Erdōs On an elementary proof of some asymptotic formulas in the theory of partitions Ann. of Math. (2) 43 (1942) 437-450.

  • [15] P. Erdōs and J. Lehner The distribution of the number of summands in the partitions of a positive integer Duke Math. J 8 (1941) 335-345.

  • [16] R. A. Fisher and F. Yates Statistical Tables for Biological Agricultural and Medical Research 2nd ed. Oliver and Boyd Ltd. London 1943. .

  • [17] B. Fristedt The structure of random partitions of large integers Trans. Amer. Math. Soc. 337 (1993) 703-735.

  • [18] G. H. Hardy and S. Ramanujan Asymptotic formulaæ in combinatory analysis Proc. Lond. Math. Soc. (3) 2 (1918) 75-115.

  • [19] M. L. Huber Perfect Simulation Chapman & Hall/CRC Monographs on Statistics & Applied Probability Taylor & Francis 2015.

  • [20] S. V. Kerov and A. M. Vershik The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm SIAM J. Algebraic Discrete Methods 7 (1986) 116-124.

  • [21] D. H. Lehmer On the remainders and convergence of the series for the partition function Trans. Amer. Math. Soc. 46 (1939) 362-373.

  • [22] D. A. Levin Y. Peres and E. L. Wilmer Markov chains and mixing times American Mathematical Soc. 2009.

  • [23] L. Moser and M. Wyman An asymptotic formula for the Bell numbers Trans. Roy. Soc. Canada. Sect. III. (3) 49 (1955) 49-54.

  • [24] E. Mossel and E. Vigoda Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny Ann. Appl. Probab. 16 (2006) 2215-2234.

  • [25] A. Nijenhuis and H. S. Wilf A method and two algorithms on the theory of partitions J. Combin. Theory Ser. A 18 (1975) 219-222.

  • [26] A. Nijenhuis and H. S. Wilf Combinatorial algorithms Academic Press Inc. [Harcourt Brace Jovanovich Publishers] New York-London second edition 1978. For computers and calculators Computer Science and Applied Mathematics.

  • [27] B. Pittel On a likely shape of the random Ferrers diagram Adv. in Appl. Math. 18 (1997) 432-488.

  • [28] B. Pittel Random set partitions: asymptotics of subset counts J. Combin. Theory Ser. A 79 (1997) 326-359.

  • [29] J. G. Propp and D. B. Wilson Exact sampling with coupled markov chains and applications to statistical mechanics Random Structures Algorithms 9 (1996) 223-252.

  • [30] H. Rademacher On the partition function p(n) Proc. Lond. Math. Soc. 2 (1938) 241-254.

  • [31] G. Szekeres An asymptotic formula in the theory of partitions Q. J. Math. 2 (1951) 85-108.

  • [32] G. Szekeres Some asymptotic formulae in the theory of partitions. II Q. J. Math. 4 (1953) 96-111.

  • [33] H. N. V. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces Math. Proc. Cambridge Philos. Soc. 48 (1952) 683-697.

  • [34] J. Von Neumann Various techniques used in connection with random digits J. Res. Nat. Bur. Stand. 12 (1951) 36-38.

  • [35] Y. Yakubovich Ergodicity of multiplicative statistics J. Combin. Theory Ser. A 119 (2012) 1250-1279.

Journal information
Impact Factor

Mathematical Citation Quotient (MCQ) 2018: 0.30

Target audience:

researchers in the fields of algebra and theoretical computer science

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 76 1
PDF Downloads 101 34 1