Vertical Mapping of Auditory Loudness: Loud is High, but Quiet is not Always Low

Open access


Although the perceptual association between verticality and pitch has been widely studied, the link between loudness and verticality is not fully understood yet. While loud and quiet sounds are assumed to be equally associated crossmodally with spatial elevation, there are perceptual differences between the two types of sounds that may suggest the contrary. For example, loud sounds tend to generate greater activity, both behaviourally and neurally, than quiet sounds. Here we investigated whether this difference percolates into the crossmodal correspondence between loudness and verticality. In an initial phase, participants learned one-to-one arbitrary associations between two tones differing in loudness (82dB vs. 56dB) and two coloured rectangles (blue vs. yellow). During the experimental phase, they were presented with the two-coloured stimuli (each one located above or below a central “departure” point) together with one of the two tones.

Participants had to indicate which of the two-coloured rectangles corresponded to the previously-associated tone by moving a mouse cursor from the departure point towards the target. The results revealed that participants were significantly faster responding to the loud tone when the visual target was located above (congruent condition) than when the target was below the departure point (incongruent condition). For quiet tones, no differences were found between the congruent (quiet-down) and the incongruent (quiet-up) conditions. Overall, this pattern of results suggests that possible differences in the neural activity generated by loud and quiet sounds influence the extent to which loudness and spatial elevation share representational content.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bach D. R. Schahinger H. Neuhoff J. G. Esposito F. Salle F. Di Lehmann C. … Seifritz E. (2008). Rising Sound Intensity: An Intrinsic Warning Cue Activating the Amygdala. Cerebral Cortex18(1) 145–150.

  • Bernstein I. H. & Edelstein B. A. (1971). Effects of some variations in auditory input upon visual choice reaction time. Journal of Experimental Psychology87(2) 241–247. Retrieved from

  • Bien N. ten Oever S. Goebel R. & Sack A. T. (2012a). The sound of size: Crossmodal binding in pitch-size synesthesia: A combined TMS EEG and psychophysics study. NeuroImage59(1) 663–672.

  • Bien N. ten Oever S. Goebel R. & Sack A. T. (2012b). The sound of size: Crossmodal binding in pitch-size synesthesia: A combined TMS EEG and psychophysics study. NeuroImage59(1) 663–672.

  • Bond B. & Stevens S. S. (1969). Cross-modality matching of brightness to loudness by 5-year-olds. Perception & Psychophysics6(6) 337–339.

  • Brochard R. Dufour A. & Després O. (2004). Effect of musical expertise on visuospatial abilities: Evidence from reaction times and mental imagery. Brain and Cognition54(2) 103–109.

  • Bruzzi E. Talamini F. Priftis K. & Grassi M. (2017). A SMARC Effect for Loudness. I-Perception8(6) 204166951774217.

  • Bueti D. & Walsh V. (2009). The parietal cortex and the representation of time space number and other magnitudes. Philosophical Transactions of the Royal Society of London B: Biological Sciences364(1525) 1831–1840.

  • Burro R. & Grassi M. (2001). Experiments on size and height of falling objects. Phenomenology of Sound Events IST Project No. IST-2000-25287 Report 1 31–39.

  • Cabrera D. & Tilley S. (2003a). Parameters for auditory display of height and size. In Proceedings of the 9th International Conference on Auditory Display (ICAD). Boston MA: Georgia Institute of Technology.

  • Cabrera D. & Tilley S. (2003b). Vertical Localization and Image Size Effects in Loudspeaker Reproduction. In Audio Engineering Society Conference: 24th International Conference: Multichannel Audio The New Reality. Banff Canada: Audio Engineering Society.

  • Carello C. Anderson K. L. & Kunkler-Peck A. J. (1998). Perception of Object Length by Sound. Psychological Science9(3) 211–214.

  • Critchley M. (1953). The parietal lobes. Oxford England: Williams and Wilkins.

  • Deroy O. Fernandez-Prieto I. Navarra J. & Spence C. (2018). Unraveling the Paradox of Spatial Pitch. In Spatial Biases in Perception and Cognition (pp. 77–93). Cambridge University Press.

  • Dolscheid S. Hunnius S. Casasanto D. & Majid A. (2014). Prelinguistic Infants Are Sensitive to Space-Pitch Associations Found Across Cultures. Psychological Science25(6) 1256–1261.

  • Douglas K. M. & Bilkey D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience10(7) 915–921.

  • Dubus G. & Bresin R. (2013). A Systematic Review of Mapping Strategies for the Sonification of Physical Quantities. PLoS ONE8(12) e82491.

  • Eitan Z. & Granot R. Y. (2006). How Music Moves. Music Perception: An Interdisciplinary Journal23(3).

  • Eitan Z. Schupak A. & Marks L. E. (2008). Louder is Higher: Cross-Modal Interaction of Loudness Change and Vertical Motion in Speeded Classification. In Proceedings of the 10th international conference on music perception and cognition (ICMP10).

  • Evans K. K. & Treisman A. (2011). Natural cross-modal mappings between visual and auditory features. Journal of Vision10(1) 6–6.

  • Fernández-Prieto I. & Navarra J. (2017). The higher the pitch the larger its crossmodal influence on visuospatial processing. Psychology of Music45(5) 713–724.

  • Fernández-Prieto I. Navarra J. & Pons F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development38 77–81.

  • Fernandez-Prieto I. Spence C. Pons F. & Navarra J. (2017). Does Language Influence the Vertical Representation of Auditory Pitch and Loudness? I-Perception8(3).

  • Ferri F. Tajadura-Jiménez A. Väljamäe A. Vastano R. & Costantini M. (2015). Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia70 468–475.

  • Foster N. E. V. Halpern A. R. & Zatorre R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. NeuroImage75 27–35.

  • Foster N. E. V. & Zatorre R. J. (2010a). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex (New York N.Y. : 1991)20(6) 1350– 1359.

  • Foster N. E. V. & Zatorre R. J. (2010b). Cortical structure predicts success in performing musical transformation judgments. NeuroImage53(1) 26–36.

  • Gallace A. & Spence C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics68(7) 1191–1203.

  • Garner W. R. & Sutliff D. (1974). The effect of goodness onencoding time in visual pattern discrimination. Perception & Psychophysics16(3) 426–430.

  • Ghazanfar A. A. Neuhoff J. G. & Logothetis N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America99(24) 15755–15757.

  • Hall D. A. & Moore D. R. (2003). Auditory Neuroscience: The Salience of Looming Sounds. Current Biology13(3) R91–R93.

  • Jacobsen T. Horenkamp T. & Schröger E. (2003). Preattentive memory-based comparison of sound intensity. Audiology & Neuro-Otology8(6) 338–346.

  • Lewkowicz D. J. & Minar N. J. (2014). Infants Are Not Sensitive to Synesthetic Cross-Modality Correspondences: A Comment on Walker et al. (2010). Psychological Science25(3) 832–834.

  • Lewkowicz D. J. & Turkewitz G. (1980). Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Developmental Psychology16(6) 597–607.

  • Lidji P. Kolinsky R. Lochy A. & Morais J. (2007). Spatial associations for musical stimuli: A piano in the head? Journal of Experimental Psychology: Human Perception and Performance33(5) 1189–1207.

  • Lipscomb S. D. & Kim E. M. (2004). Perceived match between visual parameters and auditory correlates: an experimental multimedia investigation. In S. Lipscomb R. Ashley R. Gjerdingen & P. Webster (Eds.) Proceedings of the 8th International Conference on Music Perception & Cognition (ICMPC8). Evanston IL USA: Adelaide Australia: Casual Productions.

  • Marks L. E. (1974). On Associations of Light and Sound: The Mediation of Brightness Pitch and Loudness. The American Journal of Psychology87(1/2) 173.

  • Marks L. E. (1987). On cross-modal similarity: Auditory–visual interactions in speeded discrimination. Journal of Experimental Psychology: Human Perception and Performance13(3) 384–394.

  • Melara R. D. & O’Brien T. P. (1987). Interaction between synesthetically corresponding dimensions. Journal of Experimental Psychology: General116(4) 323–336.

  • Näätänen R. Paavilainen P. Alho K. Reinikainen K. & Sams M. (1989). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters98(2) 217–221.

  • Näätänen R. Paavilainen P. Rinne T. & Alho K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology118(12) 2544–2590.

  • Neuhoff J. G. (1998). Perceptual bias for rising tones. Nature395(6698) 123–124.

  • Occelli V. Spence C. & Zampini M. (2009). Compatibility effects between sound frequency and tactile elevation. NeuroReport20(8) 793–797.

  • Parise C. V. & Spence C. (2009). ‘When Birds of a Feather Flock Together’: Synesthetic Correspondences Modulate Audiovisual Integration in Non-Synesthetes. PLoS ONE4(5) e5664.

  • Parise C. V. (2016). Crossmodal Correspondences: Standing Issues and Experimental Guidelines. Multisensory Research29(1–3) 7–28.

  • Parkinson C. Kohler P. J. Sievers B. & Wheatley T. (2012). Associations between Auditory Pitch and Visual Elevation Do Not Depend on Language: Evidence from a Remote Population. Http://Dx.Doi.Org/10.1068/P7225.

  • Phillips J. G. & Triggs T. J. (2001). Characteristics of cursor trajectories controlled by the computer mouse. Ergonomics44(5) 527–536.

  • Rinne T. Särkkä A. Degerman A. Schröger E. & Alho K. (2006). Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Research1077(1) 135–143.

  • Root R. T. & Ross S. (1965). Further Validation of Subjective Scales for Loudness and Brightness by Means of Cross-Modality Matching. The American Journal of Psychology78(2) 285.

  • Rusconi E. Kwan B. Giordano B. L. Umiltà C. & Butterworth B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition99(2) 113–129.

  • Schröger E. (1996). The influence of stimulus intensity and inter-stimulus interval on the detection of pitch and loudness changes. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section100(6) 517–526.

  • Sluming V. Brooks J. Howard M. Downes J. J. & Roberts N. (2007). Broca’s Area Supports Enhanced Visuospatial Cognition in Orchestral Musicians. Journal of Neuroscience27(14) 3799–3806.

  • Smith L. B. & Sera M. D. (1992). A developmental analysis of the polar structure of dimensions. Cognitive Psychology24(1) 99–142.

  • Spence C. (2011). Crossmodal correspondences: A tutorial review. Attention Perception & Psychophysics73(4) 971–995.

  • Spence C. & Deroy O. (2013). How automatic are crossmodal correspondences? Consciousness and Cognition22(1) 245–260.

  • Stevens J. & Marks L. (1965). Cross-modality matching of brightness and loudness. In Proceedings of the National Academy of Sciences (Vol. 54.2 pp. 407–411).

  • Tajadura-Jiménez A. Väljamäe A. Asutay E. & Västfjäll D. (2010). Embodied auditory perception: The emotional impact of approaching and receding sound sources. Emotion10(2) 216–229.

  • Tillmann B. Jolicœur P. Ishihara M. Gosselin N. Bertrand O. Rossetti Y. & Peretz I. (2010). The Amusic Brain: Lost in Music but Not in Space. PLoS ONE5(4) e10173.

  • Walker P. Bremner J. G. Mason U. Spring J. Mattock K. Slater A. & Johnson S. P. (2010). Preverbal Infants’ Sensitivity to Synaesthetic Cross-Modality Correspondences. Psychological Science21(1) 21–25.

  • Walker P. Bremner J. G. Mason U. Spring J. Mattock K. Slater A. & Johnson S. P. (2014). Preverbal Infants Are Sensitive to Cross-Sensory Correspondences: Much Ado About the Null Results of Lewkowicz and Minar (2014). Psychological Science25(3) 835–836.

  • Walker R. (1987). The effects of culture environment age and musical training on choices of visual metaphors for sound. Perception & Psychophysics42(5) 491–502.

  • Walsh V. (2003). A theory of magnitude: common cortical metrics of time space and quantity. Trends in Cognitive Sciences7(11) 483–488.

  • Walsh V. Gallistell R. C. Gellman R. Brannon E. M. Roitman J. D. Rossetti Y. … Fischer M. H. (2003). A theory of magnitude: common cortical metrics of time space and quantity. Trends in Cognitive Sciences7(11) 483–488.

  • Wicker F. W. (1968). Mapping the Intersensory Regions of Perceptual Space. The American Journal of Psychology81(2) 178.

  • Zahorik P. Brungart D. S. & Bronkhorst A. W. (2005). Auditory Distance Perception in Humans: A Summary of Past and Present Research. Acta Acustica United with Acustica91(3) 409–420.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.571
5-year IMPACT FACTOR: 0.533

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 403 123
PDF Downloads 236 236 9