The effect of how to perform movement sequences on absolute and relative timing transfer

Open access

Abstract

Depending on the difficulty of the task in terms of movement duration and the number of elements forming the sequence, recent research has shown that movement sequences are coded in visual-spatial coordinates or motor coordinates. An interesting question that arises is how a specific manner of performance without a change in such functional difficulties affects the representation of movement sequences. Accordingly, the present study investigated how the way in which a movement sequence is performed affects the transfer of timing properties (absolute and relative timing) from the practised to unpractised hand under mirror (same motor commands as those used in practice) and non-mirror (the same visual-spatial coordinates as those present during practice) conditions in two experiments each with segment movement time goals that were arranged differently. The study showed that after a limited amount of practice, the pattern of results obtained for relative timing differed between the two experiments. In the first experiment, there was no difference between retention and non-mirror transfer, but performance on these tasks was significantly better than that for mirror transfer, whereas in the second experiment, there was no difference between the mirror and non-mirror transfer. For total errors, no significant difference was found between the retention and transfer tests in both experiments. It was concluded that the way in which a sequence is performed could affect the representation of the task and the transfer of relative timing, while absolute timing could purposefully be maintained if necessary.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adams J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior 3(2) 111-150. doi:10.1080/00222895.1971.10734898

  • Collier G. L. & Wright C. E. (1995). Temporal rescaling of simple and complex ratios in rhythmic tapping. Journal of Experimental Psychology: Human Perception and Performance 21(3) 602. doi:10.1037/0096-1523.21.3.602

  • Adams J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior 3(2) 111-150. doi:10.1080/00222895.1971.10734898

  • Fitts P. M. (1964). Perceptual-motor skill learning. Categories of Human Learning 47 381-391. doi:10.1016/B978-1-4832-3145-7.50016-9

  • Fowler C. A. & Turvey M. T. (1978). Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables. Information Processing in Motor Control and Learning 1-40. doi:10.1016/B978-0-12-665960-3.50006-2

  • Grafton S. T. Hazeltine E. & Ivry R. B. (2002). Motor sequence learning with the nondominant left hand. Experimental Brain Research 146(3) 369-378. doi:10.1007/s00221-002-1181-y

  • Hayes S. J. Andrew M. Elliott D. Roberts J. W. & Bennett S. J. (2012). Dissociable contributions of motor-execution and action-observation to intermanual transfer. Neuroscience Letters 506(2) 346-350. doi:10.1016/j.neulet.2011.11.045

  • Hikosaka O. Nakahara H. Rand M. K. Sakai K. Lu X. Nakamura K. Miyachi S. & Doya K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences 22(10) 464-471. doi:10.1016/S0166-2236(99)01439-3

  • Hikosaka O. Nakamura K. Sakai K. & Nakahara H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology 12(2) 217-222. doi:10.1016/S0959-4388(02)00307-0

  • Keele S. W. Jennings P. Jones S. Caulton D. & Cohen A. (1995). On the modularity of sequence representation. Journal of Motor Behavior 27(1) 17-30. doi:10.1080/00222895.1995.9941696

  • Kelso J. A. S. (1997). Relative timing in brain and behavior: some observations about the generalized motor program and self organized coordination dynamics. Human Movement Science 16 453–460. doi:10.1016/S0167-9457(96)00044-9

  • Kelso J. A. S. & Zanone P. G. (2002). Coordination dynamics of learning and transfer across different effector systems. Journal of Experimental Psychology: Human Perception and Performance 28(4) 776. doi:10.1037/0096-1523.28.4.776

  • Kelso J. A. S. Putnam C. & Goodman D. (1983). On the spacetime structure of human inter-limb coordination. Quarterly Journal of Experimental Psychology35A347–375. doi:10.1080/14640748308402139

  • Kovacs A. J. Boyle J. Grutmatcher N. & Shea C. H. (2010). Coding of on-line and pre-planned movement sequences. Acta Psychologica 133(2) 119-126. doi:10.1016/j.actpsy.2009.10.007

  • Kovacs A. J. Han D. W. & Shea C. H. (2009). Representation of movement sequences is related to task characteristics. Acta Psychologica 132(1) 54-61. doi:10.1016/j.actpsy.2009.06.007

  • Kovacs A. J. Mühlbauer T. & Shea C. H. (2009). The coding and effector transfer of movement sequences. Journal of Experimental Psychology: Human Perception and Performance 35(2) 390. 10.1037/a0012733

  • Lashley KS. (1942). The problem of cerebral organization in vision. In J. Cattell (Ed.) Biological symposia. Vol. VII. Visual mechanisms (pp. 301-322). Lancaster PA: Jaques Cattell Press.

  • Magill R. A. (1993). Motor learning: Concepts and applications (5th ed.). Singapore: McGraw-Hill.

  • Newell K. M. (1986). Constraints on the development of coordination. Motor development in children: Aspects of coordination and control 34 341-360. doi: 10.1007/978-94-009-4460-2_19

  • Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1) 97-113. doi:10.1016/0028-3932(71)90067-4

  • Panzer S. Gruetzmacher N. Fries U. Krueger M. & Shea C. H. (2011). Age-related effects in interlimb practice on coding complex movement sequences. Human Movement Science 30(3) 459-474. doi:10.1016/j.humov.2010.11.003

  • Panzer S. Krueger M. Muehlbauer T. Kovacs A. J. & Shea C. H. (2009). Inter-manual transfer and practice: Coding of simple motor sequences. Acta Psychologica 131(2) 99-109. doi:10.1016/j.actpsy.2009.03.004

  • Panzer S. Muehlbauer T. Krueger M. Buesch D. Naundorf F. & Shea C. H. (2009). Effects of interlimb practice on coding and learning of movement sequences. The Quarterly Journal of Experimental Psychology 62(7) 1265-1276. doi:10.1080/17470210802671370

  • Park J. H. & Shea C. H. (2002). Effector independence. Journal of Motor Behavior 34(3) 253-270. doi:10.1080/00222890209601944

  • Park J. H. & Shea C. H. (2003a). Effect of practice on effector independence. Journal of Motor Behavior 35(1) 33-40. doi:10.1080/00222890309602119

  • Park J. H. & Shea C. H. (2005). Sequence learning: Response structure and effector transfer. The Quarterly Journal of Experimental Psychology Section A 58(3) 387-419. doi:10.1080/02724980343000918

  • Savion-Lemieux T. & Penhune V. B. (2005). The effects of practice and delay on motor skill learning and retention. Experimental Brain Research 161(4) 423-431. doi:10.1007/s00221-004-2085-9

  • Schmidt R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review 82(4) 225-260. doi:10.1037/h0076770

  • Schmidt R. A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Research Quarterly for Exercise and Sport 74(4) 366-375. doi:10.1080/02701367.2003.10609106

  • Scully D. M. & Newell K. M. (1985). Observational learning and the acquisition of motor skills: Toward a visual perception perspective. Journal of Human Movement Studies 11(4) 169-186.

  • Shea C. H. & Park J. H. (2003b). The independence of response structure and element production in timing sequences. Research Quarterly for Exercise and Sport 74(4) 401-420. doi:10.1080/02701367.2003.10609111

  • Shea C. H. & Wulf G. (2005). Schema theory: A critical appraisal and reevaluation. Journal of Motor Behavior 37(2) 85-102. doi:10.3200/JMBR.37.2.85-102

  • Shea C. H. Kovacs A. J. & Panzer S. (2011). The coding and inter-manual transfer of movement sequences. Frontiers in psychology 2 52. doi:10.3389/fpsyg.2011.00052

  • Shea C.H. & Wright D.L. (2012).The representation production and transfer of simple and complex movement sequences. In M. Williams & N. Hodges (Eds.) Skill acquisition in sport: Research theory & practice (pp. 131–149). Taylor & Francis.

  • Spencer R. M. Zelaznik H. N. Diedrichsen J. & Ivry R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300(5624) 1437-1439. doi:10.1126/science.1083661

  • Verwey W. B. (1994). Evidence for the development of concurrent processing in a sequential keypressing task. Acta Psychologica 85(3) 245-262. doi:10.1016/0001-6918(94)90038-8

  • Verwey W. B. (1999). Evidence for a multistage model of practice in a sequential movement task. Journal of Experimental Psychology: Human Perception and Performance 25(6) 1693. doi:10.1037/0096-1523.25.6.1693

  • Verwey W. B. (2001). Concatenating familiar movement sequences: The versatile cognitive processor. Acta psychologica 106(1) 69-95. doi:10.1016/S0001-6918(00)00027-5

  • Zelaznik H. N. Spencer R. M. & Doffin J. G. (2000). Temporal precision in tapping and circle drawing movements at preferred rates is not correlated: Further evidence against timing as a general-purpose ability. Journal of Motor Behavior 32(2) 193-199. doi:10.1080/00222890009601370

  • Zelaznik H. N. Spencer R. & Ivry R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance 28(3) 575. doi:10.1037/0096-1523.28.3.575

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.571
5-year IMPACT FACTOR: 0.533

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 389 389 21
PDF Downloads 220 220 13