Two strategies used to solve a navigation task: A different use of the hippocampus by males and females? A preliminary study in rats

Ferran Lugo 1 , Marta N. Torres 1 , and V.D. Chamizo 1 , 2
  • 1 Departament de Cognició, Desenvolupament i Psicologia de la Educació, Universitat de Barcelona, Barcelona, Spain
  • 2 The Institute of Neurosciences, Universitat of Barcelona, Barcelona, Spain


There is abundant research (both in rodents and in humans) showing that males and females often use different types of information in spatial navigation. Males prefer geometry as a source of information, whereas females tend to focus on landmarks (which are often near to a goal objects). However, when considering the role of the hippocampus, the research focuses primarily on males only. In the present study, based on Rodríguez, Torres, Mackintosh, and Chamizo’s (2010, Experiment 2) navigation protocol, we conducted two experiments, one with males and another with females, in order to tentatively evaluate the role of the dorsal hippocampus in the acquisition of two tasks: one based on landmark learning and the alternate one on local pool-geometry learning. Both when landmark learning and when geometry learning, Sham male rats learned significantly faster than Lesion male animals. This was not the case with female rats in geometry learning. These results suggest that the dorsal hippocampus could play an important role in males only.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Rawlins, J. N., Monyer, H., & Seeburg, P. H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Reviews Neuroscience, 15(3), 181–192.

  • Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: the hippocampal contribution to imagining scenes. Journal of Neuroscience, 30(35), 11688–11695.

  • Bohbot, V. D., Del Balso, D., Conrad, K., Konishi, K., & Leyton, M. (2013). Caudate nucleus-dependent navigational strategies are associated with increased use of addictive rats. Hippocampus, 23, 973–984.

  • Chamizo, V. D. & Rodríguez, C. A. (2012). Qualitative sex differences in spatial learning. In S. P. McGeown (Ed.), Psychology of gender differences, (pp. 267–281). Hauppauge, NY: Nova Science Publishers, Inc.

  • Chamizo, V. D., Rodríguez, C. A., Sánchez, J., & Mármol, F. (2016). Sex Differences after Environmental Enrichment and Physical Exercise in Rats when Solving a Navigation Task. Learning and Behavior, 44(3), 227–238.

  • Cheng, K. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23, 149–178.

  • Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12(9), 355–361.

  • Choi, J. & Silverman, I. (2003). Processes underlying sex differences in route-learning strategies in children and adolescents. Personality and Individual Differences, 34, 1153–1166.

  • Clayton, J.A. & Collins, F. S. (2014). NIH to balance sex in cell and animal studies. Nature, 509(7500), 282–283.

  • Collins, T. B. & Tabak, L. A. (2014). NIH plans to enhance reproducibility. Nature, 505(7485), 612–613.

  • Coluccia, E. & Louse, G. (2004). Gender differences in spatial orientation: a review. Journal of Environmental Psychology, 24, 329–340.

  • Doeller, C. F. & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909–5914.

  • Eichenbaum (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysology, 117, 1785–1769.

  • Galea, L. A. M. & Kimura, D. (1993). Sex differences in route learning. Personality and Individual Differences, 14, 53–65.

  • Gallistel, C. R. (1990). The Organization of Learning. The MIT Press.

  • Good, M. (2002). Spatial Memory and Hippocampal Function: Where are we now? Psicológica, 23, 109–138.

  • Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23, 5945–5952.

  • Izaki, Y., Takita, M., & Akema, T. (2008). Specific role of the posterior dorsal hippocampus – prefrontal cortex in short-term working memory. European Journal of Neuroscience, 27 (11), 3029–3034.

  • Jarrad, L.E. (1989). On the use of ibotenic acid to lesion selectively different components of the hippocampal formation. Journal of Neuroscience Methods, 29(3), 251–259.

  • Jasp Team. JASP. Version 2017.

  • Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403–411.

  • Jones, P. M., Pearce, J. M., Davies, V. J., Good, M. A., & McGregor, A. (2007). Impaired processing of local geometric features during navigation in a water maze following hippocampal lesions in rats. Behavioral Neuroscience, 121(6), 1258–1271.

  • Keeley, R. J., Tyndall, A. V., Scott, G. A., & Saucier, D. M. (2013). Sex difference in cue strategy in a modified version of the Morris water task: correlations between brain and behaviour. PLoS One. 8(7), e69727.

  • Konishi, K. & Bohbot, V. D. (2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5(1).

  • Koss, W. A. & Frick, K. M. (2017). Sex Differences in Hippocampal Function. Journal of Neuroscience Research, 95, 539–562.

  • Li, R. & Singh, M. (2014). Sex Differences in Cognitive Impairment and Alzheimer’s Disease. Frontiers in Neuroendocrinology, 35, 385–403.

  • Mackintosh, N. (2011). IQ and Human Intelligence. Oxford: University Press.

  • Martin, S. J. & Clark, R. E. (2007). The rodent hippocampus and spatial memory: from synapses to systems. Cellular and Molecular Life Sciences, 64(4), 401–431.

  • McGregor, A., Hayward, A. J., Pearce, J. M., & Good, M. A. (2004). Hippocampal lesions disrupt navigation based on the shape of the environment. Behavioral Neuroscience, 118(5), 1011–1021.

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.

  • O'Keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

  • Oler, J. A., Penley, S. C., Sava, S., & Markus, E. J. (2008). Does the dorsal hippocampus process navigational routes or behavioral context? A single-unit analysis. Europe Journal Neuroscience, 28(4), 802–812.

  • Packard, M. G. & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.

  • Paxinos, G. & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. Academic Press.

  • Pearce, J. M., Roberts, A. D. L., & Good, M. (1998). Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature, 396, 7577.

  • Pearce, J. M. (2009). The 36th Sir Frederick Bartlett lecture: an associative analysis of spatial learning. The Quarterly Journal of Experimental Psychology, 62, 1665–1684.

  • Pearce, J. M., Good, M. A., Jones, P. M., & McGregor, A. (2004). Transfer of spatial behavior between different environments: implications for theories of spatial learning and for the role of the hippocampus in spatial learning. Journal of Experimental Psychology and Animal Behavior Processes, 30(2), 135–147.

  • Persson, K., Bohbot, V. D., Bogdanovic, N., Selbaek, G., Braekhus, A., & Engedal, K. (2017). Finding of increased caudate nucleus in patients with Alzheimer’s disease. Acta Neurologica Scandinavica, 137, 224–232.

  • Rice, J. P., Wallace, D. G., & Hamilton, D. A. (2015). Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task. Behavioral Brain Research, 289, 105–117.

  • Rodríguez, C. A., Torres, A., Mackintosh, N. J., & Chamizo, V. D. (2010). Sex differences in the strategies used by rats to solve a navigation task. Journal of Experimental Psychology: Animal Behavior Processes, 36, 395–401.

  • Rodríguez, C. A., Aguilar R., & Chamizo V. D. (2011). Landmark learning in a navigation task is not affected by female rats’ estrus cycle. Psicológica, 32, 279–299.

  • Rodríguez, C. A., Chamizo, V. D., & Mackintosh, N. J. (2011). Overshadowing and Blocking between Landmark Learning and Shape Learning: the Importance of Sex Differences. Learning and Behavior, 39, 324–335.

  • Rodríguez, C. A., Mackintosh, N. J., & Chamizo, V. D. (2013). Do hormonal changes that appear at the onset of puberty determine the strategies used by female rats when solving a navigation task? Hormones and Behavior, 64, 122–135.

  • Roof, R. L., Zhang, Q., Glasier, M. M., & Stein, D. G. (1993). Gender-specific impairment on Morris water maze task after entorhinal cortex lesion. Behavioural Brain Research, 57, 47–51.

  • Sutherland, R. J., Whishaw, Q., & Kolb, B. (1983). A behavioral analysis of spatial localization following electrolytic, kamate- or colchicine-induced damage to the hippocampal formation in the rat. Behavioral Brain Research, 7(2), 133–153.

  • Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2017). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25, 58–76.

  • Westenberg, I. S. & Bolam, J. M. (1982). Duration of response to pentobarbital of female vs male albino and pigmented rats. Pharmacology, Biochemistry, and Behavior, 16(5), 815–818.

  • Whishaw, I. Q. (1998). Place learning in hippocampal rats and the path integration hypothesis. Neuroscience & Biobehavioral Reviews, 22(2), 209–220.

  • White, N. M. & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77, 125–184.

  • Will, T. R., Proaño, S. B., Thomas, A. M., Kunz, L. M., Thompson, K. C., Ginnari, L. A., … Meitzen, J. (2017). Problems and Progress regarding Sex Bias and Omission in Neuroscience Research. eNeuro, 4(6), ENEURO.0278–17.2017.

  • Williams, C. L., Barnett, A. M., & Meck, W. H. (1990). Organizational Effects of Early Gonadal Secretions on Sexual Differentiation in Spatial Memory. Behavioral Neuroscience, 104(1), 84–97.

  • Williams, C. L. & Meck, W. H. (1991). The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology, 16(1-3), 155–176.

  • Zambricki, E. A. & Dalecy, L. G. (2004). Rat sex differences in anesthesia. Comparative Medicine, 54(1), 49–53.


Journal + Issues