Electroencephalographic and skin temperature indices of vigilance and inhibitory control

Open access


Neurophysiological markers of the ability to sustain attention and exert inhibitory control of inappropriate responses have usually relied on neuroimaging methods, which are not easily applicable to real-world settings. The current research tested the ability of electroencephalographic and skin temperature markers to predict performance during the Sustained Attention to Response Task (SART), which demands vigilance and inhibitory control. In Experiment 1, we recorded the electroencephalogram (EEG) during the performance of SART and found that event-related potentials underlying inhibitory control (N1 and N2/P3) were influenced by a time on task effect, suggesting a decrement in attentional resources necessary for optimal inhibitory control. In Experiments 2 and 3, we recorded skin temperatures (distal, proximal and the distal-proximal temperature gradient –DPG) and found that they were sensitive to differential demands of mental workload, and that they were related to behavioural performance in the SART. This study suggests that the recording of EEG and skin temperature may be used to monitor fluctuations of attention in natural settings, although further research should clarify the exact psychological interpretation of these physiological indices.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adan A. & Almirall H. (1991). Horne and Ösrberg Morningness–eveningness questionnaire: A reduced scale. Personality and Individual Differences 12 241-253.

  • Baker F. & Driver H. (2007). Circadian rhythms sleep and the menstrual cycle. Sleep Medicine 8 613-622. https://doi.org/10.1016/j.sleep.2006.09.011

  • Ballard J. (1996). Computerized Assessment of Sustained Attention: A Review of Factors Affecting Vigilance Performance. Journal of Clinical and Experimental Neuropsychology 18(6) 843-863. https://doi.org/10.1080/01688639608408307

  • Benikos N. Johnstone S. J. & Rooddenrys S. J. (2013). Varying task difficulty in the Go/Nogo task: The effects of inhibitory control arousal and perceived effort on ERP components. International Journal of Psychophysiology 87 262-272. https://doi.org/10.1016/j.ijpsycho.2012.08.005

  • Blatter K. Graw P. Münch M. Knoblauch V. Wirz-Justice A. & Cajochen C. (2006). Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behavioural Brain Research 168 312-317. https://doi.org/10.1016/j.bbr.2005.11.018

  • Bokura H. Yamaguchi S. & Kobayashi S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology 112 2224-2232. PMID: 11738192

  • Carrillo de la Peña M. & Cadaveira F. (2000). The effect of motivational instructions on P300 amplitude. Neurophysiologie Clinique 30(4) 232-239. https://doi.org/10.1016/S0987-7053(00)00220-3

  • Cheyne J. A. Carriere J. & Smilek D. (2006). Absent-mindedness: Lapses of conscious awareness and everyday cognitive failures. Consciousness and Cognition 15 578-592. https://doi.org/10.1016/j.concog.2005.11.009

  • Correa A. Molina E. & Sanabria D. (2014). Effects of chronotype and time of day on the vigilance decrement during simulated driving. Accident Analysis & Prevention 67 113-118. https://doi.org/10.1016/j.aap.2014.02.020

  • Cosi S. Vigil-Colet A. Canals J. & Lorenzo-Seva U. (2008). Psychometric properties of the Spanish adaptation of the Barratt Impulsiveness Scale-11-A for children. Psychological Reports 103 336-346. https://doi.org/10.2466/pr0.103.2.336-346

  • Davies D. R. & Parasuraman R. (1982). The psychology of vigilance. London: Academic Press.

  • Díaz-Morales J. Escribano C. & Jankowski K. (2015). Chronotype and time-of-day effects on mood during school day. Chronobiology International 32 37-42. https://doi.org/10.3109/07420528.2014.949736

  • Dinges D. F. & Powell J. W. (1985). Microcomputer analyses of performance on a portable simple visual RT task during sustained operations. Behavior Research Methods Instruments & Computers 17 652-655. https://doi.org/10.3758/BF03200977

  • Ernst M. D. (2004). Permutation methods: a basis for exact inference. Statist Sci 19(4) 678-85.

  • Escribano C. & Díaz-Morales J. (2014). Daily fluctuations in attention at school considering starting and chronotype: an exploratory study. Chronobiology International 31 761-769. https://doi.org/10.3109/07420528.2014.898649

  • Escribano C. & Díaz-Morales J. (2016). Sleep Habits and Chronotype Effects on Academic and Cognitive Performance in Spanish Adolescents: A Review. International Online Journal of Educational Sciences 8(5) 17-29. http://dx.doi.org/10.15345/iojes.2016.05.003

  • Falkenstein M. Hoormann J. & Hohnbein J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica 101 267-291. PMID: 10344188

  • Folkard S. (1997). Black times: temporal determinants of transport safety. Accident Analysis and Prevention 29(4) 417-430. PMID: 9248500

  • Goel N. Rao H. Durmer J. & Dinges D. (2009). Neurocognitive consequences of sleep deprivation. Seminars in Neurology 29(4) 320-339. https://dx.doi.org/10.1055%2Fs-0029-1237117

  • Goldstein D. Hahn C. Hasher L. Wiprzycka U. & Zelazo P. (2007). Time of day Intellectual Performance and Behavioral Problems in Morning versus Evening type Adolescents: Is there a Synchrony Effect? Personality and Individual Differences 42(3) 430-440. https://dx.doi.org/10.1016%2Fj.paid.2006.07.008

  • Gradisar M. & Lack L. (2004). Relationship between the circadian rhythms of finger temperature core temperature sleep latency and subjective sleepiness. Journal of Biological Rhythms 19 157-163. https://doi.org/10.1177/0748730403261560

  • Grier R. A. Warm J. S. Dember W. N. Matthews G. Galinsky T. L. & Parasuraman R. (2003). The vigilance decrement reflects limitations in effortful attention not mindlessness. Human Factors 45 349-359. https://doi.org/10.1518/hfes.45.3.349.27253

  • Haubert A. Walsh M. Boyd R. Morris M. Wiedbusch M. Krusmark M. & Gunzelmann G. (2018). Relationship of Event-Related Potentials to the Vigilance Decrement. Frontiers in Psychology 9 237. https://doi.org/10.3389/fpsyg.2018.00237

  • Helton W. S. & Russell P. N. (2011). Working memory load and the vigilance decrement. Experimental Brain Research 212(3) 429-37. https://doi.org/10.1007/s00221-011-2749-1

  • Kato Y. Endo H. & Kizuka T. (2009). Mental fatigue and impaired response processes: Event-related brain potentials in a Go/NoGo task. International Journal of Psychophysiology 11 204-211. https://doi.org/10.1016/j.ijpsycho.2008.12.008

  • Kelley P. Lockley S. Kelley J. & Evans M. (2017). Is 8:30 a.m. Still Too Early to Start School? A 10:00 a.m. School Start Time Improves Health and Performance of Students Aged 13-16. Frontiers in Human Neuroscience 11 588. https://dx.doi.org/10.3389%2Ffnhum.2017.00588

  • Koelega H. S. Verbaten M. N. van Leeuven T. H. Kenemans J. L. Kemmer C. & Sjouw W. (1992). Time effects on event-related brain potentials and vigilance performance. Biological Psychology 34 59-86. PMID: 1420655

  • Kräuchi K. (2007a). The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiology & Behavior 90 236-245. https://doi.org/10.1016/j.physbeh.2006.09.005

  • Kräuchi K. (2007b). The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Medicine Reviews 11 439-451. https://doi.org/10.1016/j.smrv.2007.07.001

  • Kräuchi K. Cajochen C. Werth E. & Wirz-Justice A. (1999). Warm feet promote the rapid onset of sleep. Nature 401 36-37. https://doi.org/10.1038/43366

  • Lara T. Madrid J. A. & Correa Á. (2014). The vigilance decrement in executive function is attenuated when individual chronotypes perform at their optimal time of day. PLoS ONE 9(2) e88820. https://doi.org/10.1371/journal.pone.0088820

  • Lo S. & Andrews S. (2015). To transform or no transform: using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology 6 1171. https://doi.org/10.3389/fpsyg.2015.01171

  • Luus B. Van Snellenberg J. & Liotti M. (2007). To stop or no to stop: a high spatio-temporal resolution study of response inhibition using MEG. International Congress Series 1300 425-428. https://doi.org/10.1016/j.ics.2007.03.016

  • Mackworth N. H. (1948). The breakdown of vigilance during prolongued visual search. Quaterly Journal of Experimental Psychology 1 6-21. https://doi.org/10.1080/17470214808416738

  • Maire M. Reichert C. F. Gabel V. Viola A. U. Krebs J. Strobel W. . . . Schmidt C. (2014). Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation. Frontiers in Behavioral Neuroscience 8 59. https://doi.org/10.3389/fnbeh.2014.00059

  • Miyake A. Friedman N. P. Emerson M. J. Witzki A. H. Howerter A. & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology 41(1) 49-100. https://doi.org/10.1006/cogp.1999.0734

  • Möckel T. Beste C. & Wascher E. (2015). The effects of Time on Task in Response Selection - An ERP study of Mental Fatigue. Scientific Reports 5 10113. https://doi.org/10.1038/srep10113

  • Monk T. H. (1989). A Visual Analogue Scale technique to measure global vigor and affect. Psychiatry Research 27 89-99. PMID: 2922449

  • O´Connell R. G. Dockree P. M. Bellgrove M. A. Turin A. Ward S. Foxe J. J. & Robertson I. H. (2009). Two types of action error: electrophysiological evidence for separable inhibition and sustained attention neural mechanisms producing error on go/no-go tasks. Journal of Cognitive Neuroscience 21(1) 93-104. https://doi.org/10.1162/jocn.2009.21008

  • Oken B. S. Salinsky M. C. & Elsas S. M. (2006). Vigilance alertness or sustained attention: physiological basis and measurement. Clinical Neurophysiology 117(9) 1885-1901. https://doi.org/10.1016/j.clinph.2006.01.017

  • Parasuraman R. & Davies D. R. (1977). A taxonomic analysis of vigilance. In M. RR (Ed.) Vigilance: Theory operational performance and physiological correlates (pp. 559-574). New York: Plenum.

  • Parasuraman R. Warm J. S. & See J. E. (1998). Brain systems of vigilance. In R. Parasuraman The attentive brain (pp. 221-256). Cambridge: Massachussetts: MIT Press.

  • Paus T. Zatorre R. J. Hofle N. Caramanos Z. Gotman J. Petrides M. & Evans A. C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience 9(3) 392-408. https://doi.org/10.1162/jocn.1997.9.3.392

  • Perrin F. Pernier J. Bertrand O. & Echallier J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology 72(2) 184-187. https://doi.org/10.1016/0013-4694(89)90180-6

  • Polich J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology 118(10) 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019

  • Polich J. & Kok A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology 41 103-146. PMID: 8534788

  • Robertson I. H. Manly T. Andrade J. Baddeley B. T. & Yiend J. (1997). “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35 747-758. PMID: 9204482

  • Roche R. Garavan H. Foxe J. & O'Mara S. (2005). Individual differenes discriminate event-related potentials but not performance during response inhibition. Experimental Brain Research 160 60-70. https://doi.org/10.1007/s00221-004-1985-z

  • Rodríguez-Morilla B. Madrid J. Molina E. & Correa A. (2017). Blue-Enriched White Light Enhances Physiological Arousal But Not Behavioral Performance during Simulated Driving at Early Night. Frontiers in Psychology 8. https://doi.org/10.3389/fpsyg.2017.00997

  • Romeijn N. & Van Someren E. (2011). Correlated fluctuations of daytime skin temperature and vigilance. Journal of Biological Rhythms 26(1) 68-77. https://doi.org/10.1177/0748730410391894

  • Royuela A. & Macías J. A. (1997). Propiedades clinimétricas de la versión castellana del cuestionario de Pittsburgh. Vigilia-Sueño 9 81-94.

  • Ruchsow M. Groen G. Kiefer M. Hermle L. Spitzer M. & Falkenstein M. (2008). Impulsiveness and ERP components in a Go/Nogo task. Journal of Neural Transmission 115 909-915. https://doi.org/10.1007/s00702-008-0042-7

  • Sarabia J. A. Rol M. A. Mendiola P. & Madrid J. A. (2008). Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system. Physiology & Behavior 95 570-580. https://doi.org/10.1016/j.physbeh.2008.08.005

  • Schmajuk M. Liotti M. Busse L. & Woldorff M. (2006). Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44 384-395. https://doi.org/10.1016/j.neuropsychologia.2005.06.005

  • Schneider W. Eschman A. & Zuccolotto A. (2002). E-Prime user’s guide. Inc. Pittsburgh: Psychology Software Tools.

  • Shaw T. H. Warm J. S. Finomore V. Tripp L. Matthews G. Weiler E. & Parasuraman R. (2009). Effects of sensory modality on cerebral blood flow velocity during vigilance. Neuroscience Letters 461 207-211. https://doi.org/10.1016/j.neulet.2009.06.008

  • Soler J. Tejedor R. Feliu-Soler A. Pascual J. C. Cebolla A. Soriano J. . . . Perez V. (2012). Psychometric propierties of Spanish version of Mindful Attention Awareness Scale (MAAS). Actas Españolas de Psiquiatría 40 19-26.

  • Tucker D. M. Liotti M. Potts G. F. Russell G. S. & Posner M. I. (1994). Spatiotemporal analysis of brain electrical fields. Human Brain Mapping 1 134-152. https://doi.org/10.1002/hbm.460010206

  • van Marken Lichtenbelt W. D. Daanen H. A. Wouters L. Fronczek R. Raymann R. J. Severens N. M. & Van Someren E. J. (2006). Evaluation of wireless determination of skin temperature using iButtons. Physiology & Behavior 88 489-497. https://doi.org/10.1016/j.physbeh.2006.04.026

  • Vetter C. Fischer D. Matera J. & Roenneberg T. (2015). Aligning Work and Circadian Time in Shift Workers Improves Sleep and Reduces Circadian Disruption. Current Biology 25 907-911. https://doi.org/10.1016/j.cub.2015.01.064

  • Vogel E. K. & Luck S. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology 37 190-203. PMID: 10731769

  • Warm J. S. Parasuraman R. & Matthews G. (2008). Vigilance requires hard mental work and is stressful. Human Factors 50(3) 433–441. https://doi.org/10.1518/001872008X312152

  • Watson N. Badr M. Belenky G. Bliwise D. Buxton O. Buysse D. . . . Tasali E. (2015). Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. SLEEP 38(6) 843-844. https://doi.org/10.5665/sleep.4716

  • Wittmann M. Dinich J. Merrow M. & Roenneberg T. (2006). Social Jetlag: Misalignment of Biological and Social Time. Chronobiology International 23(1-2) 497-509. https://doi.org/10.1080/07420520500545979

  • Wright K. Hull J. T. & Czeisler C. A. (2002). Relationship between alertness performance and body temperature in humans. American Journal of Physiology-Regulatory. Integrative and Comparative Physiology 283 1370-1377. https://doi.org/10.1152/ajpregu.00205.2002

  • Zerbini G. van der Vinne V. Otto L. Kantermann T. Krijnen W. Roenneberg T. & Merrow M. (2017). Lower school performance in late chronotypes: underlying factors and mechanisms. Scientifics Reports 7 4385. https://dx.doi.org/10.1038%2Fs41598-017-04076-y

  • Zordan L. Sarlo M. & Stablum F. (2008). ERP components activated by the “GO!” and “WITHHOLD!” conflict in the random Sustained Attention to Response Task. Brain and Cognition 66 57-64. https://doi.org/10.1016/j.bandc.2007.05.005

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.571
5-year IMPACT FACTOR: 0.533

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 544 280 16
PDF Downloads 243 121 9