The Effect of 5-Aminosalicylic Acid on Intestinal Microbiota

Vanda Sargautiene 1 , Renāte Ligere 1 , Ineta Kalniņa 2 , Ida Jākobsone 3 , Vizma Nikolajeva 4 ,  and Aleksejs Derovs 5 , 6
  • 1 Department of Internal Medicine, University of Latvia, 1004, Rīga, Latvia
  • 2 Latvian Biomedical Research and Study Centre, , 1067, Rīga, Latvia
  • 3 Department of Organic Chemistry, University of Latvia, 1004, Rīga, Latvia
  • 4 Department of Microbiology and Biotechnology, University of Latvia,, 1004, Rīga, Latvia
  • 5 Gastroenterology, Hepatology and Nutrition Clinic, Rīga East Clinical University Hospital, 1038, Rīga, Latvia
  • 6 Department of Internal Diseases, Rīga Stradiņš University, 1007, Rīga, Latvia

Abstract

The article discusses the possible relationships between intestinal microbiota and the therapeutic efficacy of 5-aminosalicylic acid (5-ASA) in inflammatory bowel diseases. Intestinal microbiota may be involved in 5-ASA enzymatic biotransformation, but the metabolism of drugs by the intestinal microbiota has been studied in less detail, and little is known about the relationships between anti-inflammatory efficacy of 5-ASA with bacterial viability, quantity and activity. It remains unclear whether 5-ASA affects the microbiota depending on the different segments of gastrointestinal tract. Drugs and diet can both improve and worsen the composition of the intestinal microbiota. However, it is not known whether drugs affect the intestinal microbiota regardless of diet. Further research is needed to answer these questions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abdu-Allah, H., El-Shorbagi, A., Abdel-Moty, S., El-Awady, R., Abdel-Alim, A. (2016). 5-Aminosalicylic acid (5-ASA): A unique anti-inflammatory salicylate. Med. Chem., 6 (5), 306–315.

  • Andrews, C. G. (2011). Mesalazine (5-aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther., 34 (3), 374–383.

  • Axelrad, J. L. (2016). Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol., 22 (20), 28.

  • Baumgart, D. (2012). Crohn’s Disease and Ulcerative Colitis: From Epidemiology and Immunobiology to a Rational Diagnostic and Therapeutic Approach. Springer Science & Business Media. 695 pp.

  • Belzer, C., Chia, L., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., de Vos, W. (2017). Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. MBio, 8 (5).

  • Berends, S. S. (2019). Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet., 58 (1), 15–37.

  • Bland, J. (2016). Intestinal microbiome, Akkermansia muciniphila, and medical nutrition therapy. Integr. Med. (Encinitas), 15 (5), 14–16.

  • Chia, L. W., Knol, J., Belzer, C. (2018). Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek, 111 (6), 859–873.

  • Cuervo, A. S.-M. (2013). Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res., 33 (10), 811–816.

  • Deloménie, C. F. (2001). Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol., 183 (11), 3417–3427.

  • Farzaneh, H., Mohammad, E. H., Gharavinia, A., Mahdavi, S. B., Akbarpour, M. J., Baghaei, A., Emami., M. H. (2017). Quality of life in inflammatory bowel disease patients: A cross-sectional study. J. Res. Med. Sci., 22, 104.

  • Gobert, A. P., Sagrestani, G., Wilson, E. D., Verriere, T. G., Dapoigny, M., Del’homme, C., Bernalier-Donadille, A. (2016). The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci. Rep., 6, Article No. 39399.

  • Ham, M. M. (2012). Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev. Clin. Pharmacol., 5 (2), 113–123.

  • Herreweghen, F. A.-S.-V. (2017). In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes, 8 (1), 81–96.

  • Ikeda, I. T. (2007). 5-aminosalicylic acid given in the remission stage of colitis suppresses colitis-associated cancer in a mouse colitis model. Clin. Cancer Res., 13 (21), 6527–6531.

  • Ye, B. (2015). Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J. Gastrointest. Pharmacol. Ther., 6 (4), 137–144.

  • Jean, L., Audrey, M., Beauchemin, C., Consrtium, O. (2018). Economic evaluations of treatments for inflammatory bowel diseases: A literature review. Can. J. Gastroenterol. Hepatol., 2018, 7439730.

  • Kaiser, G. Y. (1999). Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology, 116 (3), 602–609.

  • Kim, D. (2015). Gut microbiota-mediated drug-antibiotic interactions. Drug Metab. Dispos., 43 (10), 1581–1589.

  • Laffin, M. F. (2019). A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep., 9, 12294.

  • Lopez-Siles, M., Enrich-Capó, N., Aldegue, X., Sabat-Mir, M., Duncan, S., Garcia-Gil, L., Martinez-Medina, M. (2018). Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect. Microbiol., 7 (8), 281.

  • Machiels, K. J., Arijs, I., Eeckhaut, V. V., Verbeke, K., Ferrante, M. V. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63 (8), 1275–1283.

  • Martín, R. C.-H. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis., 20 (3), 417–430.

  • Parada, V. D. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol., 10, 277.

  • Perrotta, C. P. (2015). Five-aminosalicylic acid: An update for the reappraisal of an old drug. Gastroenterol. Res. Pract., 2015, 456895, 1–9.

  • Probert, C. D. (2014). Combined oral and rectal mesalazine for the treatment of mild-to-moderately active ulcerative colitis: Rapid symptom resolution and improvements in quality of life. J. Crohn’s Colitis, 8 (3), 200–207.

  • Ramirez-Alcantara, V. M. (2014). Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2. Amer. J. Physiol. Gastrointest. Liver Physiol., 306 (G), 1002–1010.

  • Rubin, D. (2014). Why it’s time for updated U.S. colorectal cancer prevention guidelines in inflammatory bowel disease. Gastrointest. Endosc., 80 (5), 849–851.

  • Rubin, D. C. (2008). Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: A clinical review and update. Inflamm. Bowel Dis., 14 (2), 265–274.

  • Sartor, R. W. (2017). Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroeterology., 155 (2), 327–339.

  • Sasaki, M., Klapproth, J. (2012). The role of bacteria in the pathogenesis of ulcerative colitis. J. Signal Transduct., 2012, 704953.

  • Sheehan, D. S. (2017). The gut microbiota in inflammatory bowel disease. Gastroenterol. Clin. North Amer., 46, 143–154.

  • Sonu, I. L. (2010). Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol. Clin. North. Amer., 39 (3), 559–599.

  • Thangaraju, M. C. (2009). GPR109A is a g-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res., 69, 2826–2832.

  • van der Beek, C., Dejong, C., Troost, F., Masclee, A., Lenaerts, K. (2017). Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev., 75 (4), 286–305.

  • Wilson, I. N. (2017). Gut microbiome interactions with drug metabolism, efficacy and toxicity. Transl. Res., 179, 204–222.

  • Xinqiang, W., Yuanbing, W., Liangmei, H., Longhuo, W., Xiangcai, W., Zhiping, L. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer., 9 (14), 2510–2517.

  • Xu, J., Chen, N., Wu, Z., Song, Y., Zhang, Y., Wu, N., Zhang, F., Ren, X., Liu, Y. (2018). 5-Aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis. Frontiers Microbiol., 9, 1274.

  • Xue, L. H. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther., 36, 811–814.

  • Xue, L., Huang, Z., Chen, X. Z. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther., 36, 811–814.

  • Zhang, S. F. (2018). 5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity. J. Antibiot. (Tokyo), 71 (11), 950–961.

OPEN ACCESS

Journal + Issues

Search