High-Temperature X-Ray Diffraction and Fluorescence Spectra of SnSe Single Crystal

Open access


The temperature dependence of unit cell parameters was studied using high-temperature X-ray diffraction and the coefficient of thermal expansion of SnSe single crystal was determined. Fluorescence spectra of SnSe single crystal grown by the Bridgman-Stockbarger method were examined using a Cary Eclipse spectrophotometer at room temperature in the wavelength range 200–900 nm. When the samples were irradiated by a pulse at a wavelength of 230 nm, the fluorescence spectra exhibited maxima at wavelengths 313.07, 423.03, 458.93, 495.07, and 530.00 nm.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antunez P. D. Buckley J. J. Brutchey R. L. (2011). Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale3 No. 6 2399–2411.

  • Chekini M. Filter R. Bierwagen J. Cunningham A. Rockstuhl C. Burgi T. (2015). Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays. J. Appl. Phys. 118 233107

  • Chernozatonskiy L. A. Artyukh A. A. (2018). Quasi-two-dimensional transition metal dichalcogenides: structure synthesis properties and applications [Чернозатонский Л. A. Артюх A. A. Квазидвумерные дихалько- гениды переходных металлов: структура синтез свойства и применение]. Успехи физических наук [Advances in Physical Sciences] 188 (1) 3–30 (in Russian).

  • Dai X. Liang Y. Zhao Y. Gan S. Jia Y. Xiang Y. (2019). Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe). Allotropes Sensors 19 173.

  • Filho P. E. C. Cardoso A. L. C. Pereira M. I. A. et al. (2016). CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochimica et Biophysica Acta (BBA): General Subjects1860 (1) Part A 28–35.

  • Flessau S. Wolter C. Pöselt E. Kröger E. Mews A. Kipp T. (2014). Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols. Phys. Chem. Chem. Phys.16 10444–10455.

  • Franzman M. A. Schlenker C. W. Thompson M. E. Brutchey R. L. (2010). Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Amer. Chem. Soc. 885 4060–4061.

  • Huseynov J. I. Mamedova R. F. Abbasov I. I. Askerov D. J. (2018). Spektry fluorestsensii monokrisstallov SnSe. In: Applied Optics Conference St. Petersburg 19–21.12.2018 pp. 81–85.

  • Im H. S. Lim Y.R. Cho Y.J. Park J. Cha E.H. Kang H.S. (2014). Germanium and tin selenide nanocrystals for high-capacity lithium ion batteries: Comparative phase conversion of germanium and tin. J. Phys. Chem. C118 (38) 21884–21888.

  • Indirajith R. Rajalakshmi M. Gopalakrishnan R. Ramamurthi K. (2011). Effects of annealing on thermally evaporated SnSe thin films. Ferroelectrics 413 (1) 108–114.

  • Johnson J. B. Jones H. Latham B. S. Parker J. D. Engelken R. D. Barber C. (1999). Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond. Sci. Technol. 14 (6) 501.

  • Lashkarev V. E. Lyubchenko A. A. Sheykman M. K. (1981). Unbalanced Processes in Photoconductors [Лашкарев В. E. Любченко A. В. Шейнкман М. К. Неравновесные процессы в фотопроводниках]. Naukova dumka Kiev 264 pp. (in Russian).

  • Loa I. Popuri S. R. Fortes A. D. Bos J. W. G. (2018). Critical mode and band-gap-controlled bipolar thermoelectric properties of SnSe. Phys. Rev. Materials2 085405.

  • Nariya B. Dasadia A. Jani A. (2013). Growth of Tin Monosulphide and Tin Monoselenide Single Crystals. LAP Saarbrücken. 128 pp.

  • Oleynikov V. A. Sukhanova A. V. Nabiyev I. R.. (2007). Fluorestsentnye poluprovodnikovye nanokristally v biologii i medisine. Rossiyskiye nanotexnologii2 (1–2) 160–173.

  • Pratip K. Chattopadhyay Stephen P. Perfetto JoanneY. Roederer M. (2010). The use of quantum dot nanocrystals in multicolor flow cytometry. WIREs Nanomed. Nanobiotechnol.2 334–348.

  • Vorobjev I. A. Rafalovskaya-Orlovskaya E. P. Gladkikh A. A. Potashnitsova D. M. Barteneva N. S. (2011). Fluorescent semiconductor nanocrystals in microscopy and flow cytometry. Cell Tissue Biol. 5 (4) 321–331.

  • Wang C. W. Xia Y.Y.Y. Tian Z. et al. (2017). Photoemission study of the electronic structure of valence band convergent SnSe. Phys. Rev. B96 (16) 165118.

  • Wiedemeier H. Schnering (1978). Refinement of the structures of GeS GeSe SnS and SnSe. Z. Kristallogr. 148 295–303.

  • Xiaolong X. Qingjun S. Haifeng W. et al. (2017). In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. Appl. Mater. Interfaces9 12601–12607.

  • Yao G. G. Zheng Z. Yang G. (2018). Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy driven water evaporation. Nanoscale10 (6).

  • Zhou Y. Li W. Wu M. Zhao L.-D. He J. S-H.Wei S-H. Huang L. (2018). Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study. Phys. Rev. B 97 245202.

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 16
PDF Downloads 62 62 20