Application of Metabolomic Analysis in Exploration of Plant Genetic Resources

Open access

Abstract

The article addresses the issues of using metabolomic analysis to study genetic resources of cereal crops in order to (1) determine phylogenetic linkages between species (the degree of domestication); (2) within species to describe genetic diversity according to its responses to biotic and abiotic stressors and biochemical characteristics (chemical compounds) determining food, feed and technological quality indicators; and (3) select the most resistant and highest-quality geno-types for complex breeding use.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abeysekara S. Swaminathan S. Desai N. Guoc L. Bhattacharyyaa M. K. (2016). The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. Plant Sci. 243 105-114.

  • Alpatyeva N. V. Gavrilyuk I. P. Leont’eva N. A. Oreshko L. S. Krasil’nikov V. N. Barsukova N. A. Loskutov I. G. (2004). Prolamins and celiac disease [Алпатьева H. B. Гаврилюк И. П. Леонтьева Н. А. ОрешкоЛ. С. Красильников B. Н. Барсукова Н. А. Лоскутов И. Г. Проламины и целиакия]. Agric. Russia 6 41–9 (in Russian)

  • Afonnikov D. A MironovaV. V. (2014). Systematic biology [Афонников Д. А. Миронова B. B. Системная биология]. Russ. J. Gen. Appl. Res. 18 175-192 (in Russian).

  • Balmer D. Flors V. Glauser G. Mauch-Mani B. (2013). Metabolomics of cereals under biotic stress: Current knowledge and techniques. Frontiers Plant Sci. 4 82.

  • Bernardi J. Stagnati L. Lucini L. Rocchetti G. Lanubile A. Cortellini C. De Poli G. Busconi M. Marocco A. (2018). Phenolic profile and susceptibility to Fusarium infection of pigmented maize cultivars. Frontiers PlantSci. 9 1189.

  • Bhandari K. Nayar H. (2014). Low temperature stress in plants: An overview of roles of cryoprotectants in defense. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. New York NY: Springer pp. 193-265.

  • Björck I. Östman E. Kristensen M. Anson N. M. Priced R. K. Haenenc G. R. M. M. Havenaar R. Knudsen K. E. B. Frid A. Mykkanen H. Welch R. W. Riccardi G. (2012). Cereal grains for nutrition and health benefits: Overview of results from in vitro animal and human studies in the HEALTHGRAIN project. Trends Food Sci. Technol 25 87-100.

  • Blanch M. Alvarez I. Sanchez-Ballesta M. T. Escribano M. Merodio C. (2017). Trisaccharides isomers galactinol and osmotic imbalance associated with CO2 stress in strawberries. Postharvest Biol. Technol. 131 84-91.

  • Bolton M. D. (2009). Current review: Primary metabolism and plant defense-fuel for the fire. Mol. Plant-Microbe Interactions22 487-497.

  • Buerstmayr H. Ban T. Anderson J. A. (2009). QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breed 128 1-26.

  • Bushnell W. R. Perkins-Veazie P. Russo V. M. Collins J. Seeland T. M. (2009). Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues. Phytopathology 100 33-41.

  • Chakraborty S. Newton A. C. (2011). Climate change plant diseases and food security: an overview. Plant Pathol. 60 1-14.

  • Cuperlovic-Culf M. Rajagopalan N. K. Tulpan D. Loewen M. C. (2016). Metabolomics and cheminformatics analysis of antifungal function of plant metabolites. Metabolites 6 31.

  • Croze M. L. Vella R. E. Pillon N. J. Soula H. A. Hadji L. Guichardant M. Soulage C. O. (2012). Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice. J. Nutritional Biochemistry24 457-466.

  • Gagkaeva T. Yu. Gavrilova O. P. Levitin M. M. (2014). Biodiversity and a real main toxin-producing fungi of the genus Fusarium. Biosfera 6 36–45.

  • Gagkaeva T. Yu. Gavrilova O. P. Levitin M. M. Novozhilov K. V. (2011). Cereal crops Fusarium. Supplement to Journal Protection and Quarantine of Plants [Гагкаева T. Ю. Гаврилова О. П. Левитин М. М. Новожилов К. B. Фузариоз зерновых культур] 5 1-100 (in Russian).

  • Gu J. Jing L. Ma X. Zhang Z. Guo Q. Li Y. (2015). GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats. J. Nutritional Biochemistry 26 1509-1519.

  • Dyakov Yu. T. (2012). Fundamental phytopatology [Дьяков Ю. T. ф-ундаментальная фumonamoлoгuя].KIasand Moskva. 512 pp.

  • Ermakov A. I. Ikonnikova M. I. Lukovnikova G. I. Yarosh N. P. (1969). The results and perspectives of biochemical research of cultivated plants [Ермаков А. И. Иконникова М. И. Луковникова Г. И. Ярош Н. П. Итоги и перспективы биохимических исследований культурных растений]. Works Appl. Bot. Gen. Breed. 41 326-364 (in Russian)

  • Fernie A. R. Schauer N. (2009). Metabolomics-assistedbreeding: A viable option for crop improvement? Trends Genet. 25 39–48.

  • Fiehn O. Kopka J. Dormann P. Altmann T. Trethewey R. N. Willmitzer L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnol. 18 1157-1161.

  • Harrigan G. G. Brackett D. J. Boros L. G. (2005). Medicinal chemistry metabolic profiling and drug target discovery: A role for metabolic profiling in reverse pharmacology and chemical genetics. Mini Rev. Medi. Chem. 5 13-20.

  • Hill C. B. Roessner U. (2013). Metabolic profiling of plants by GC-MS. In: Weckwerth W. Kahl G. (eds.). The Handbook ofPlantMetabolomics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA pp. 1-23.

  • Hollywood K. Brison D. R. Goodacre R. (2006). Metabolomics: Current technologies and future trends . Proteomics 6 (17) 4716–4723.

  • Kaur J. Bhatti D. S. Goyal M. (2015). Influence of copper application on forage yield and quality of oats fodder in copper deficient soils. Indian J. Anim. Nutr. 32 290-294.

  • Khakimov B. Bak S. Engelsen S. B. (2014a). High-throughput cereal metabolomics: Current analytical technologies challenges and perspectives. J. Cereal Sci. 59 393–418.

  • Khakimov B. Jespersen B. M. Engelsen S. B. (2014b). Comprehensive and comparative metabolomic profiling of wheat barley oat and rye using Proc. Latvian Acad. Sci. Section B Vol. 73 (2019) No. 6. gas chromatography-mass spectrometry and advanced chemometrics. Foods. 3 569-585.

  • Kluger B. Bueschl C. Lemmens M. Michlmayr H. Malachova A. Koutnik A. Maloku I. Berthiller F. Adam G. Krska R. Schuhmacher R. (2015). Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS ONE 10 (3)e0119656.

  • Kokubo Y. Nishizaka M. Ube N. Yabuta Y. Tebayashi S. I. Ueno K. Taketa S. Ishihara A. (2017). Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae. Biosci. Biotechnol. Biochem. 81 431–440.

  • Konarev A. V. (1994). All-Russian Institute of Plant Industry and it contribution to development of agricultural science and plant breeding of the country [Конарев A. B. Всероссийский НИИ растениеводства и его вкладвразвитие с.-х. науки иселекциистраны]. Agricult. Biol. 3 13-75 (in Russian).

  • Konarev A. V. Khoreva V. I. (2000). Biochemicalresearch of plant genetic resources in VIR [КонаревА. В. Хорева В. И. Биохимическое изучение генетических ресурсов растений в ВИРе]. VIR S-Petersburg (in Russian)

  • Konarev A. V. Shelenga T. B. Perchuk I. N. Blinova E. V. Loskutov I. G. (2015). The characteristic of oat diversity (genus Avena L.) from VIR collection — an initial material for breeding oat Fusarium resistance [Конарев A. B. Шеленга T. B. Перчук И. Н. Блинова Е. В. Лоскутов И. Г. Характеристика разнообразия овса (A-vena L.) из коллекции ВИР — исходного материала для селекции на устойчивость к фузариозу]. Agric. Russia 5 2-10 (in Russian).

  • Krasilnikov V. N. (2015). Actual directions of using plant genetic resources in technology for functional and specific food [Красильников В. Н. Актуальные направления использования генетических ресурсов растений в пищевой инженерии продуктов функционального и специа^и-зированного назначения]. Agric. Russia 11 36-42 (in Russian).

  • Kumar V. Sinha A. K. Makkar H. P. S. Becker H. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 120 949-959.

  • Lahiri A. Chatterjee M. A. Ghosh K. Majee M. (2003). Diversification and evolution of L-myo-inositol 1-phosphat e synthase. FEBS Letters553 3-10.

  • Langridge P. Fleury D. (2011). Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 29 33–40.

  • Lemmens M. Scholz U. Berthiller F. D’all Asta C. Koutnik A. Schuhmacher R. Adam G. Buerstmayr H. Mesterházy A. Krska R. Ruckenbauer P. (2005). The ability to detoxify the mycotoxindeoxynivalenol colocalizes with a major quantitative trait locus. Mol. Plant Microbe Interact. 18 1318-1324.

  • Leonova S. Shelenga T. Hamberg M. Konarev A. Loskutov I. Carlsson A. (2008). Analysis of oil composition in cultivars and wild species of Oat (Avena sp.). J. Agric. Food Chem. 56 7983-7991.

  • Loewus F. A. Murthy P. P. N. (2000). Myo-inositol metabolism in plants. Plant Sci. 150 1-19.

  • Lokhov P. G. Archkov A. I. (2008). Mass-spectrometry methods in metabolomics [Лохов П. Г. Арчаков A. И. Масс-спектрометрические методы в метаболомике. Biomed. Chem. 54 497-511 (in Russian).

  • Loskutov I. G. (2007). Oat (Avena L.). Distribution Taxonomy Evolution and Breeding Value [Лоскутов И. Г. Овес (Avea L.). Распространение систематика эволюция и селекционная ценность]. VIR. S-Pb. 336 pp. (in Russian).

  • Loskutov I. G. (2009). Diversity of naked barley and oat and their use to crop breeding. In: Works on Applied Botany Genetics and Plant Breeding [Лоскутов И. Г. Разнообразие голозерных форм ячменя и овса и его использование в селекции]. VIR St. Petersburg 173-177 (in Russian).

  • Loskutov I. G. Rines H. W. (2011). Avena L. In: Kole C. (Ed.) Wild Crop Relatives: Genomic & BreedingResources. Vol. 1. Cereals. Springer Heidelberg Berlin New York pp. 109-184.

  • Loskutov I. G. Shelenga T. V. Konarev A. V. Shavarda A. L. Blinova D. V. Dzyubenko N. I. (2017). The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Russi. J. Gen. Appl. Res. 7 501-508.

  • Loskutov I. G. Shelenga T. V. Konarev A. V. Horeva V. I. Shavarda A. L. Blinova E. V. Gnutikov A. A. (2019a). Biochemical aspects of interactions between fungi and plants: A case study of Fusarium in oats. Agricult. Biol. 54 575-588.

  • Loskutov I. G. Shelenga T. V. Konarev A. V. Vargach Yu. I. Porokhovinova E. A. Blinova E. V. Gnutikov A. A. Rodionov A.V. (2019b). Metabolomics in the structurization and phenotyping of varietal diversity of cultivated oats (Avena sativa L.): Biochemical differentiation of naked and covered forms [Лоскутов И. Г. Шеленга T. В. Конарев А. В. Варгач Ю. И. Пороховинова Е. А. Блинова Е. В. Гнутиков А. А. Родионов А. В. Биохимический подход к структурированию сортового разнообразия голозерных и пленчатых форм культурного овса (Avena sativa L.)]. Ecological Genetics (in press) (in Russian).

  • Ermakov A. I. (Ed.) (1987). Methods of biochemical evaluation of plants [Методы биохимического изучения растений. Под ред. А. И. Ермакова]. Agropromizdat Leningrad (in Russian)

  • Okazaki Y. Katayama T. (2014). Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet. Nutri. Res. 34 1085-1091.

  • Pestka J. (2010). Deoxynivalenol: mechanisms of action human exposure and toxicological relevance. Arch. Toxicol. 84 663-679.

  • Pieterse C.M. J. Poelman E. H. Van Wees S. C. M. Dicke M. (2013). Induced plant responses to microbes and insects. Frontiers Plant Sci. 41-3.

  • Perkowski J. Stuper K. Buśko M. Góral T. Kaczmarek A. Jeleń H. (2012). Differences in metabolomic profiles of the naturally contaminated grain of barley oats and rye. J. Cereal Sci. 56 544–551.

  • Sánchez-Martín J. Heald J. Kingston-Smith A. Winters A. Rubiales D. Sanz M. Mur L. A. J. Prats E. (2015). A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon antioxidant and photo-oxidative metabolism. Plant Cell Environ. 38 1434-1452.

  • Schauer N. Fernie A. R. (2006). Plant metabolomics: Towards biological function and mechanism. Trends Plant Sci. 11 508-516.

  • Schenck C. A. Maeda H. A. (2018). Tyrosine biosynthesis metabolism and catabolism in plants. Phytochemistry 149 82-102.

  • Seki M. Narusaka M. Ishida J. Nanjo T. Fujita M. Oono Y. Kamiya A. Nakajima M. Enju A. Sakurai T. Satou M. Akiyama K. Taji T. Yamaguchi-Shinozaki K. Carninci P. Kawai J. Hayashizaki Y. Shinozaki K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought cold and high-salinity stresses using a full-length cDNAmicroarray. Plant J. 31 279-292.

  • Sitkin S. I. Tkachenko E. I. Vakhitov T. Ya. Oreshko L. S. Zhigalova T. N. (2013). Metabolic of blood serum according to a gas chromatography-mass-spectrometry (rX-MC) at patients with ulcer colitis and celiac disease [Ситкин C. И. Ткаченко Е. И. Вахитов T. Я. Орешко Л. С. Жигалова Т. Н. Метаболом сыворотки крови по данным газовой хроматографии-масс-спектрометрии (rX-MC) у пациентов с язвенным колитом и больных целиакией]. Exper. Gastroenter. 12 77-90 (in Russian)

  • Sharova E. I. (2016). Antioxidants of plants [Шарова Е. И. Антиоксиданты растений]. Izdatelstvo St-Pb. Universiteta St. Petersburg pp. 102-118 (in Russian).

  • Shelenga T. V. Bekish L. P. Novikova L. Yu. Perchuk I. N. Dubovskaya A. G. Kerv Yu. A. Razhna K. Konarev A. V. (2018). Fatty acid composition of oil seed breeding lines spring rapeseed (Brassica napus L.) in Leningrad region [Шеленга T. В. Бекиш Л. П. Новикова л. Ю. Перчук И. Н. Дубовская А. Г. Керв Ю. А. Ражна К. Конарев А. В. Жирно-кислотный состав масла семян селекционных линий ярового рапса (Brassica napus L.) в условиях ленинградской области]. Agrie. Russia 5 12-17 (in Russian).

  • Shelenga T. V. Konarev A. V. Dzubenko N. I. Malyshev L. L. Takai T. (2006). Evaluation of accessions of meadow fescue from Vavilov Institute of Plant Industry containing symbiotic endofitic fungus of genus Neotyphodium [Шеленга T. В. Конарев А. В. Дзюбенко Н. И Малышев Л. Л. Такаи T. Изучение образцов овсяницы луговой из коллекции ВНИИ растениеводства имени Н. И. Вавилова содержаш;их симбиотические грибы-эндофиты рода Neotyphodium]. Russian Agrie. Sei. 1 20-22 (in Russian).

  • Shelenga T. V. Solov’eva A. E. Shavarda A. L. Konarev A. V. (2014). Research of metabolom of crops ofN.I. Vavilov VIR collection. Abstracts of International Scientific Conference dedicated to the 120th anniversary of VIR. 6-8 October. [Шеленга T. В. Соловьева А. E. Шаварда А. Л. Конарев А. В. Исследование метаволома культур коллекции ВИР им. Н. И. Вавилова]. 98 pp. (in Russian).

  • Shulaev V. (2006). Metabolomics technology and bioinformatics. Brief Bioinform. 7 128-139.

  • Shulaev V. Cortes D. Miller G. Mittler R. (2008). Metabolomics for plant stress response. Ph-ysiol. Plant. 132 199-208.

  • Smolikova G. N. Shavarda A. L. Alekseychuk I. V. Chantzeva V. V. Medvedev S. S. (2015). Metabolomic approach to assessment of cultivars specific of seeds of Brassiea napus L. [Смоликова Г. Н. Шаварда А. Л. Алексейчук И. В. Чанцева В. В. Медведев С. С. Метаболомный подход к оценке сортовой специфичности семян Brassiea napus L.] Russ. J. Gen. Appl. Res. 19 121-127 (in Russian).

  • Vidigal D. S. Willems L. van Arkel J. Dekkers B. J. W. Hilhorst H. W. M. Bentsink L. (2016). Galactinol as marker for seed longevity. Plant Sci. 246 112-118.

  • Warth B. Parich A. Bueschl C. Schoefbeck D. Katharina N. Neumann N. Kluger B. Schuster K. Krska R. Adam G. Lemmens M. Schuhmacher R. (2015). GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 11 722-738.

  • Woyengo T. A. Ramprasath V. R. Jones P. J. H. (2009). Anticancer effects of phytosterols (Review). Eur. J. Clin. Nutr. 63 813-820.

  • Yandeau-Nelson M. D. Lauter N. Zabotina O. A. (2015). Advances in metabolomic applications in plant genetics and breeding. CAB Re~v. 10 1-17.

  • Zhao Y. Chang S. K. C. Qu G. Li T. Cui H. (2009). p-sitosterol inhibits cell growth and induces apoptosis in SGC-7901 human stomach cancer cells. J. Agrieult. Food Chem. 57 5211-5218

  • Žilić S. Šukalović V. H. Dodig D. Maksimović V. Maksimović M. Basić Z. (2011). Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sei.54 417-424.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 27
PDF Downloads 73 73 29