Novel Interactions of Adrenodoxin-Related [2Fe-2S] Plant Ferredoxins MFDX1 and MFDX2 Indicate Their Involvement in a Wide Spectrum of Functions in Plant Mitochondria

Open access

Abstract

Electron transfer chains of plant organelles (both chloroplasts and mitochondria) contain their own special set of ferredoxins. The relatively recently described adrenodoxin-like [2Fe-2S]-ferredoxins MFDX1 and MFDX2 of plant mitochondria are among the least studied of these. Until now, the only established function for them is participation in the final stage of biotin biosynthesis. In this work, using genetic and biochemical approaches, we searched for possible partners of these proteins in the genomes and proteomes of tobacco (Nicotiana tabacum L.) and foxglove (Digitalis purpurea L.) plants. MORF9 protein, one of the auxiliary components of the RNA editing complex of organelles (editosome), was found among the most prominent protein partners of adrenodoxin-like [2Fe-2S] tobacco ferredoxins. According to the results obtained from the yeast two-hybrid system, NtMFDX1 and NtMFDX2 of tobacco also bind and interact productively with the previously uncharacterised long non-coding polyadenylated RNA, which, based on its structural features, is capable of regulating the function of a number of components of complexes I (Nad1, Nad5) and III (protein of the cytochrome c synthesis system CcmF) and contributes to the formation of Fe/S-clusters in the corresponding protein complexes of the respiratory chain of plant mitochondria. We found one of the main components of the thiazol synthase complex (mitochondrial protein DpTHI1) to be the partner of ferredoxin DpMFDX2 of Digitalis purpurea. Finally, additional arguments were obtained in favour of the possible participation of MFDX1 and MFDX2 in the very ancient, but only recently described ‘progesterone’ steroid hormonal regulatory system: in leaves of the previously constructed CYP11A1-transgenic tomato plants, only the mature form of mitochondrial cytochrome P450scc (CYP11A1) of mammals is able to enter the mitochondria, where the above-mentioned components of the electron transport chain are localised. In summary, all of the newly revealed interactions of adrenodoxin-like [2Fe-2S] ferredoxins MFDX1 and MFDX2 indicate their participation in a wide range of functions in plant mitochondria.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. (eds.). Current Protocols in Molecular Biology. Vols. 1 2 units 2 3 10 13 15 16. Wiley New York: 1990.

  • Barnes W. M. (1994). PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA91 (6) 2216–2220.

  • Brown D. C. W. Thorpe T. A. (1982). Mitochondrial activity during shoot formation and growth in tobacco callus. Physiol. Plant54 (2) 125–130.

  • Burch-Smith T. M. Brunkard J. O. Choi Y. G. Zambryski P. C. (2011). Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc. Natl. Acad. Sci. USA108 (51) e1451–1460.

  • Castandet B. Araya A. (2011). RNA editing in plant organelles. Why make it easy? Biochemistry (Moscow)76 (8) 924–931.

  • Chabregas S. M. Luche D. D. Van Sluys M.-A. Menck C. F. M. Silva-Filho M. C. (2003). Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J. Cell Sci. 116 285–291.

  • Couvillion M. T. Soto I. C. Shipkovenska G. Churchman L.S. (2016). Synchronized mitochondrial and cytosolic translation programs. Nature533 (7604) 499–503.

  • Godoi P. H. Galhardo R. S. Luche D. D. Van Sluys M. A. Menck C. F. Oliva G. (2006). Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J. Biol. Chem.281 (41) 30957–30966.

  • Golemis E. A. Serebriiskii I. Finley R. L. Jr. Kolonin M. G. Gyuris J. Brent R. (2009). Interaction trap/two hybrid system to identify interacting proteins. In: Current Protocols in Protein Science. Wiley New York Suppl. 57 pp. 19.2.1–19.2.35.

  • Edwards D. (Ed.). (2007). Plant Bioinformatics (Methods and Protocols). Edwards D. (Ed.). Humana Press Totowa New Jersey. 552 pp.

  • Grinberg A. V. Hannemann F. Schiffler B. Müller J. Heinemann U. Bernhardt R. (2000). Adrenodoxin: Structure stability and electron transfer properties. Proteins 40 590–612.

  • Gyuris J. Golemis E. A. Chertkov H. Brent R. (1993). Cdi1 a human G1 and S phase protein phosphatase that associates with Cdk2. Cell75 (4) 791–803.

  • Haag S. Schindler M. Berndt L. Brennicke A. Takenaka M. Weber G. (2017). Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9. Nucleic Acids Res. 45 (8) 4915–4928.

  • Kartel N. A. Shpakovski G. V. Spivak S. G. Brichkova G. G. Yarmolinsky D. G. Berdichevets I. N. Maneshina T. V. Recombinant plasmid pGBP450f to obtain transgenic plants and a method of producing transgenic plants with improved productivity and resistance to fungal phytopathogens [Картель H. A. Шпаковский Г. В. Спивак С. Г. Бричкова Г. Г. Ярмолинский Д. Г. Бердичевец И. H. Манешина Т. В. Рекомбинантная плазмида pGBP450f для получения трансгенных растений и способ получения трансгенных растений табака с повышенной продуктивностью и устойчивостью к грибным фитопатогенам]. Patent of the Russian Federation No. 2237717 [Патент Российской Федерации № 2237717]. Priority from 20.12.2002. Issued 10.10.2004. Bulletin of Inventions No. 10.

  • Kartel N. A. Spivak S. G. Shpakovski G. V. Maneshina T. V. Brichkova G. G. Yarmolinsky D. G. Berdichevets I. N. Genetic engineering construction expressing cDNA of CYP11A1 gene of animal origin in plants and a method for producing transgenic plants with increased yield and resistance to phytopathogens [Картель H. A. Спивак С. Г. Шпаковский Г. В. Манешина Т. В. Бричкова Г. Г. Ярмолинский Д. Г. Бердичевец И. H. Генно-инженерная конструкция экспрессирующая кДНК гена CYP11A1 животного происхождения в растениях и метод получения трансгенных растений с повышенной урожайностью и устойчивостью к фитопатогенам]. Patent of the Republic of Belarus No. 9201 [Патент Республики Беларусь № 9201]. Priority from 30.12.2002. Issued 25.01.2007.

  • Luzikov V. N. Novikova L. A. Spiridonova V. A. Isaeva L. V. Whelan J. Hugosson M. Glazer E. (1994). Design of heterologous mitochondria: Import of cattle cytochrome P-450scc precursor into plant mitochondria. Biochemistry (Moscow)59 (7) 1098–1101.

  • Murashige T. Skoog F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15 (3) 473–497.

  • Ng S. Ivanova A. Duncan O. Law S. R. Van Aken O. De Clercq I. Wang Y. Carrie C. Xu L. Kmiec B. Walker H. Van Breusegem F. Whelan J. Giraud E. (2013) A membrane-bound NAC transcription factor ANAC017 mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell. 25 (9) 3450–3471.

  • Ohta D. Mizutani M. (2004). Redundancy or flexibility: Molecular diversity of the electron transfer components for P450 monooxygenases in higher plants. Front. Biosci. 9 1587–1597.

  • Picciocchi A. Douce R. Alban C. (2001) Biochemical characterization of the Arabidopsis biotin synthase reaction. The importance of mitochondria in biotin synthesis. Plant Physiol. 127 (3) 1224–1233.

  • Picciocchi A. Douce R. Alban C. (2003) The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J. Biol. Chem. 278 (27) 24966–24975.

  • Proshkin S. A. Shematorova E. K. Suslova E. A. Proshkina G. M. Shpakovski G. V. A minor isoform of the human RNA polymerase II subunit hRPB11 (POLR2J) interacts with several components of the translation initiation factor eIF3. (2011) Biochemistry (Moscow)76 (8) 976–980.

  • Randau L. Stanley B. J. Kohlway A. Mechta S. Xiong Y. Söll D. (2009). A cytidine deaminase edits C to U in transfer RNAs in Archaea. Science324 (5927) 657–659.

  • Ruden D. M. Ma J. Li Y. Wood K. Ptashne M. (1991). Generating yeast transcriptional activators containing no yeast protein sequences. Nature350 (6315) 250–252.

  • Salvato F. Havelund J. F. Chen M. Rao R. S. P. Rogowska-Wrzesinska A. Jensen O. N. Gang D. R. Thelen J. J. M¸ller I. M. (2014) The potato tuber mitochondrial proteome. Plant Physiol. 164 (2) 637–653.

  • Sambrook J. Fritsch E. F. Maniatis T. (1989). Molecular Cloning: A Laboratory Manual. 2nd ed. CSHL Press New York Cold Spring Harbor. Vols. 1 2 3.

  • Serebriiskii I. G. Toby G. G. Finley R. L. Jr. Golemis E. A. (2001). Genomic analysis utilizing the yeast two hybrid system. Methods Mol. Biol.175 415–454.

  • Shematorova E. K. Shpakovski D. G. Shpakovski G. V. (2013). Novel complexes of gene expression and their role in the appearance and evolution of the genus Homo [Шематорова E. K. Шпаковский Д. Г. Шпаковский Г. В. Новые комплексы генной экспрессии и их роль в возникновении и эволюции рода Homo]. Tsitologiia55 (3) 172–177 (in Russian).

  • Shematorova E. K. Slovokhotov I. Yu. Baranova E. N. Khaliluev M. R. Babak O. G. Klykov V. N. Shpakovski D. G. Spivak S. G. Shpakovski G. V. (2018). The role of organelles in the functioning of steroid hormonal systems in animals and higher plants [Шематорова E. K. Словохотов И. Ю. Баранова E. Н. Халилуев М. Р. Бабак О. Г. Клыков В. Н. Шпаковский Д. Г. Спивак С. Г. Шпаковский Г. В. Роль органелл в функционировании стероидных гормонльных систем у животных и высших растений;]. [Механизмы регуляции функций органелл эукариотической клетки Proceedings of the International Conference “Mechanisms of regulation of eukaryotic cell organelles functions”] Irkutsk 22–24 May 2018 pp. 155–157 (in Russian).

  • Shematorova E. K. Slovokhotov I. Y. Khaliluev M. R. Berdichevets I. N. Baranova E. N. Babak O. G. Shpakovski D. G. Spivak S. G. Shpakovski G. V. (2014). Mitochondria as a possible place for initial stages of steroid biosynthesis in plants [Шематорова E. K. Словохотов И. Ю. Халилуев М. Р. Бердичевец И. Н. Баранова E. Н. Бабак О. Г. Шпаковский Д. Г. Спивак С. Г. Шпаковский Г. В. Митохондрии как возможное место инициации синтеза стероидных гормонов в растениях]. J. Stress Physiol. Biochem. [Журнал стресс-физиологии и биохимии] 10 (4) 85–97 (in Russian).

  • Shpakovski G. V. Spivak S. G. Berdichevets I. N. Babak O. G. Kubrak S. V. Kilchevsky A. V. Aralov A. V. Slovokhotov I. Yu. Shpakovski D. G. Baranova E. N. Khaliluev M. R. Shematorova E. K. (2017). A key enzyme of animal steroidogenesis can function in plants enhancing their immunity and accelerating the processes of growth and development. BMC Plant Biology17 (Suppl. 1) 120–131.

  • Spivak S. G. Berdichevets I. N. Litvinovskaya R. P. Drach S. V. Kartel N. A. Shpakovski G. V. (2010). Some peculiarities of steroid metabolism in transgenic Nicotiana tabacum plants bearing the CYP11A1 cDNA of cytochrome P450scc from the bovine adrenal cortex. Russ. J. Bioorg. Chem.36 (2) 224–232.

  • Spivak S. G. Berdichevets I. N. Yarmolinsky D. G. Maneshina T. V. Shpakovski G. V. Kartel N. A. (2009). Construction and characteristics of transgenic tobacco Nicotiana tabacum L. plants expressing CYP11A1 cDNA encoding cytochrome P450scc. Russ. J. Genet.45 (9) 1067–1073.

  • Takenaka M. Zehrmann A. Verbitskiy D. Kugelmann M. Härtel B. Brennicke A. (2012). Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc. Natl. Acad. Sci. USA109 (13) 5104–5109.

  • Takenaka M. Zehrmann A. Verbitskiy D. Härtel B. Brennicke A. (2013). RNA editing in plants and its evolution. Annu. Rev. Genet. 47 335–352.

  • Takubo K. Morikawa T. Nonaka Y. Mizutani M. Takenaka S. Takabe K. Takahashi M. A. Ohta D. (2003). Identification and molecular characterization of mitochondrial ferredoxins and ferredoxin reductase from Arabidopsis. Plant Mol. Biol. 52 (4) 817–830.

  • Woodson J. D. Perez-Ruiz J. M. Chory J. (2011). Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr. Biol. 21 (10) 897–903.

  • Zhu Y. Y. Machleder E. M. Chenchik A. Li R. Siebert P. D. (2001). Reverse transcriptase template switching: A SMART approach for full-length cDNA library construction. Biotechniques30 (4) 892–897.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 21
PDF Downloads 80 80 25