Clinical Characterisation of Rota Virus Infection Associated with Most Commonly Circulating Genotypes in Children Hospitalised in Children’s University Hospital: A Cross-Sectional Study in Latvia

Open access


In developed and developing countries, most cases of acute gastroenteritis in children are caused by viruses, and rotaviruses are known as the leading cause. The aim of our study was to estimate the main circulating serotypes of rotavirus before the introduction of routine immunisation in Latvia, and to search for their possible correlation with clinical symptoms and circulating genotypes. A cross-sectional study was carried out among children who had been hospitalised in the Children’s Clinical University Hospital from April 2013 to December 2015. Genotyping was done for 462 stool samples. Among G/P combinations, the most predominant genotypes were G4P[8] (61.3%), G9P[8] (12.4%) and G2P[4] (10.0%) in children of age < 5 years, G4P[8] (45.5%), G2P[4] (18.2%), G9P[8], G3P[8], and G1P[8] (9.1%) in children of age > 5 years. There was a statistically significant correlation (p < 0.05) between clinical signs (vomiting, dehydration, chronic diseases) and G1P[8] and G8P[8] genotypes. Infants infected with genotype G4P[4] had a statistically significant negative correlation with severity of acute gastroenteritis episodes (p < 0.05). We detected nine different rotavirus G genotypes, and two different P genotypes. G4P[8], G9P[8], and G2P[8] were predominant. We observed correlation between the dominant genotypes and clinical manifestations of rotavirus infection.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aly M. Al Khairy A. Al Johani S. Balkhy H. (2015). Unusal rotavirus genotypes among children with acute diarrhea in Saudi Arabia. BMC Infect. Dis. 15 192

  • Anonymous (2011). Vesikari PATH Clinical Severity Scoring System Manual Version. Available from: (accessed 15.05.2019).

  • Anonymous (2019). The Center for Disease Prevention and Control of Latvia. Available from: (accessed 15.05.2019).

  • Bern C. Unicomb L. Gentsch J. R. Banul N. Yunus M. Sack R. B. et al. (1992). Rotavirus diarrhea in Bangladeshi children: Correlation of disease severity with serotypes. J. Clin. Microbiol. 30 3234–3248.

  • Buttery J. P. Lambert S. B. Grimwood K. Nissen M. D. Field E. J. Macartney K. K. Akikusa J. D. Kelly J. J. Kirkwood C. D. (2011). Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia’s National Childhood vaccine schedule. Pediatr. Infect. Dis. J. 30 S25–S29.

  • Cascio A. Vizzi E. Alaimo C. Arista S. (2001). Rotavirus gastroenteritis in Italian children: Can severity of symptoms be related to the infecting virus? Clin. Infect. Dis. 32 1126–1132.

  • Cortese M. M. Tate J. E. Simonsen L. Edelman L. Parashar U. D. (2010). Reduction in gastroenteritis in United States children and correlation with early rotavirus vaccine uptake from national medical claims databases. Pediatr. Infect. Dis. J. 29 489–494.

  • Curns A. T. Steiner C. A. Barrett M. Hunter K. Wilson E. Parashar U. D. (2010). Reduction in acute gastroenteritis hospitalizations among US children after introduction of rotavirus vaccine: analysis of hospital discharge data from 18 US states. J. Infect. Dis. 201 1617–1624.

  • Estes M. K. (1996). Rotaviruses and their replication. In: Fields Virology. Fields B. N. et al. (eds.). Lippincott Raven Philadelphia PA 1625–1655.

  • Estes M. K. Cohen J. (1989). Rotavirus gene structure and functions. Microbiol. Rev. 53 410–449.

  • Gentsch J. R. Woods P. A. Ramachandran M. Das B. K. Leite J. P. Alfieri A. Kumar R. Bhan M. K. Glass R. I. (1996). Review of G and P typing results from a global collection of rotavirus strains: Implications for vaccine development. J. Infect. Dis. 174 (Suppl 1) S30–S36.

  • Gimenez-Sanchez F. Delgado-Rubio A. Martinon-Torres F. Bernaola-Iturbe E. Rotascore Research Group. (2010). Multicenter prospective study analysing the role of rotavirus on acute gastroenteritis in Spain. Acta Paediatr. 99 738–742.

  • Gouvea V. Glass R. I. Woods P. Taniguchi K. Clark H. F. Forrester B. et al. (1990). Polymerase chain reaction amplification and typing of rota virus nucleic acid from stool specimens. J. Clin. Microbiol. 28 276–282.

  • Ianiro G. Delogu R. Fiore L. Monini M. Ruggeri F. M.; RotaNet–Italy Study Group. (2017). Group A rotavirus genotypes in hospital-acquired gastroenteritis in Italy 2012–14. J. Hosp. Infect. 96 (3) 262–267.

  • Parashar U. D. Burton A. Lanata C. Boschi-Pinto C. Shibuya K. Steele D. Birmingham M. Glass R. I. (2009). Global mortality associated with rotavirus disease among children in 2004. J. Infect. Dis. 200 (Suppl 1) S9–S15.

  • Piekarska A. Kacerka A. Majda-Stanisławska E. Jóźwiak B. Sidorkiewicz M. (2015). Predominance of genotype P[9]G3 in rotavirus gastroenteritis in Polish children. Arch. Med. Sci. 11 (3) 577–583.

  • Seo J. K. Sim J. G. (2000). Overview of rotavirus infections in Korea. Pediatr. Int. 42 406–410.

  • Shim J. O. Chang J. Y. Shin S. Moon J. S. Ko J. S. (2016). Changing distribution of age clinical severity and genotypes of rotavirus gastroenteritis in hospitalized children after the introduction of vaccination: A single center study in Seoul between 2011 and 2014. BMC Infect. Dis. 16 287.

  • Soeorg H. Tamm E. Huik K. Pauskar M. et al. (2012). Group A rotavirus genotypes circulating prior to implementation of a National Immunization Program in Estonia. Hum. Vaccin. Immunother. 8 (4) 465–469.

  • Sudarmo S. M. Shigemura K. Athiyyah A. F. et al. (2015). Genotyping and clinical factors in pediatric diarrhea caused by rotaviruses: One-year surveillance in Surabaya Indonesia. Gut Pathog. 73.

  • Ushijima H. Shinozaki T. Fang Z. Y. Glass R. I. (1992). Group B rota virus antibody in Japanese children. J. Diarrhoeal Dis. Res. 10 41.

  • Van Damme P. Giaquinto C. Maxwell M. Todd P. Van der Wielen M. REVEAL Study Group. (2007). Distribution of rotavirus genotypes in Europe 2004–2005: the REVEAL Study. J. Infect. Dis. 195 Suppl 1 S17–25.

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 144 11
PDF Downloads 93 93 6