Influence of Ribavirin on Prunus Domestica L. Regeneration, Genome Stability and Virus Eradication In Vitro

Ingrida Mazeikiene 1 , Darius Kviklys 1 , Jurate Brone Siksnianiene 1 , Dainius Zinkus 2 ,  und Vidmantas Stanys 2
  • 1 Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, , 554333, Babtai, Lithuania
  • 2 Aleksandras Stulginskis University, , 53361, Lithuania


Prunus necrotic ring spot ilarvirus (PNRSV) and Apple chlorotic leaf spot trichovirus (ACLSV) are common in plum orchards. The aim of the study was to obtain virus-free planting material of Prunus domestica L. by chemotherapy in vitro. Ribavirin at concentrations of 10 to 50 mg·l−1 was added to Murashige–Skoog (MS) nutrition medium for virus eradication from microshoots. After a two-week period of chemotherapy, meristems were subcultured monthly on MS medium and proliferation index of shoots was estimated. Microshoots were retested by reverse transcription polymerase chain reaction for presence of virus. At lowest concentrations of 10 mg·l−1 ribavirin was entirely ineffective for ACLSV and 10 to 30 mg·l−1 was ineffective for PNRSV elimination. Ribavirin concentrations of 40 and 50 mg·l−1 destroyed both pathogens. However, at higher concentrations of 40 and 50 mg·l−1 ribavirin exhibited some signs of phytotoxicity on microshoots in the first sub-cultivation period. In order to test the genetic stability of the microplants after chemotherapy the amplified fragment length polymorphism (AFLP) method was applied. Plant genome stability in ‘Magna Glauca’ at concentrations of 40 mg·l−1 was damaged, as the presence of polymorphic AFLP markers were observed.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • Beismann, H., Barker, J. H. A., Karp, A. Speck, T. (1997). AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. J. Mol. Ecol., 6 (10), 989–993.

  • Chuang, S. J., Chen, C.L., Chen, J. J., Chou, W. Y., Sung, J. M. (2009). Detection of somaclonal variation in micro-propagated Echinacea purpurea using AFLP marker. Sci. Hortic., 120 (1), 121–126.

  • Cieślińska, M., Morgaś, H. (2010). Occurrence and detection of lesser known viruses and phytoplasmas in stone fruit orchards in Poland. Folia Horticult. Ann., 22 (2), 51–57.

  • Cieszlinka, M., Malinowski, T. (2002). Virus and virus-like diseases of fruit tree and small fruit. Zeszyty Naukowe Instytuta Sadownictwa i Kwiaciarstwa Skierniewicach, 10, 197–206.

  • Crotty, S., Maag, D., Cameron, C. E., Andino, R. (2001). RNA virus error catastrophe: Direct molecular test by using ribavirin. J. Proc. Natl. Acad. Sci. USA, 12, 6895–6900.

  • Danci, O., Erdei, L., Vidacs, L., Danci, M., Baciu, A., David, I., Berbentea, F. (2009). Influence of ribavirin on potato plants regeneration and virus eradication. J. Horticult. For. Biotechnol., 13, 421–425.

  • De la Puente, R., González A. I., Ruiz M. L., Polanco C. (2008). Somaclonal variation in rye (Secale cereale L.) analyzed using polymorphic and sequenced AFLP markers. In Vitro Cell. Dev. Biol. Plant, 44 (5), 419–426.

  • Deogratias, J. M., Dosba, F., Lutz, A. (1989). Eradication of prune dwarf virus, prunus necrotic ringspot virus, and apple chlorotic leaf spot virus in sweet cherries by a combination of chemotherapy, thermotherapy, and in vitro culture. Can. J. Plant Pathol., 11, 337–342.

  • Doyle, J. J., Doyle, J. L. (1990). A rapid total DNA preparation procedure for fresh plant tissue. Focus, 12, 13–15.

  • Gospodaryk, A., Moročko-Bičevska, I., Pūpola N., Kāle, A. (2013). Occur-rence of stone fruit viruses in plum orchards in Latvia. Proc. Latvian Acad. Sci., Section B, 67 (2), 116–123.

  • Graci, J. D., Cameron, C. E. (2005). Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol., 16 (1), 37–48.

  • Hansen, A. J., Lane, D. W. (1985). Elimination of Apple chlorotic leafspot virus from apple shoot. J. Plant Disease, 69 (2), 134–135.

  • Hashmi, G., Huetell, R., Meyer, R., Krusberg, L., Hammerschlag, F. (1997). RAPD analysis of somaclonal variations derived from embryo callus cultures of peach. J. Plant Cell Rep., 16, 624–627.

  • Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F., Zhou, J. (2015). Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. J. PCTOC., 121 (2), 435–443.

  • Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech., 6 (1), 54.

  • Martelli, G. P., Candresse, T., Namba, S. (1994). Trichovirus, a new genus of plant viruses. Arch. Virology, 134, 451–455.

  • Mažeikienė, I., Šikšnianienė, J. B., Stanys, V. (2016). The virological state of plums in the genetic resource orchard and genetic characteristic of Plum pox virus. Sodininkystė ir Daržininkystė, 35 (3–4), 3–15 (in Lithuanian).

  • Mazeikiene, I., Siksnianiene, J. B., Gelvonauskiene, D., Bendokas, V., Stanys, V. (2018). Prevalence, genetic diversity and molecular variability of Apple Chlorotic Leaf Spot Virus capsid protein in Lithuania. JPDP, 125 (4), 389–396.

  • Menzel, W., Jelkmann, W., Maiss, E. (2002). Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods, 99, 81–92.

  • Moury, B., Cardin, L., Onesto, J. P., Candresse, T., Poupet, A. (2001). Survey of Prunus necrotic ringspot virus in rose and its variability in rose and Prunus spp. J. Phytopathol., 91, 84–91.

  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. J. Physiol. Plantarum, 15 (3), 473–479.

  • Nemeth, M. (1986). Virus. Mycoplazma, and Ricketsia Diseases of Fruit Tree. Academia Kiado, Budapest. 1321 pp.

  • Ngezahayo, F., Guo, W. L., Gong, L., Li, F. X., Liu, B., Dong, Y. (2006). Genomic variation in micropropagated Robinia ambigua ‘idahoensis’ revealed by RAPD markers. J. Hort. Sci., 41 (6), 1466–1468.

  • Niu, F., Pan, S., Wu, Z., Jiang, D., Li, S. (2012). Complete nucleotide sequences of the enomes of two isolates of apple chlorotic leaf spot virus from peach (Prunus persica) in China. J. Arch. Virol., 157, 783–786.

  • Paduch-Cichal, E., Sala-Rejczak, K. (2011). Biological and molecular characterization of Prunus necrotic ringspot virus isolates from three rose cultivars. J. Acta Physio. Plant., 33 (6), 2349–2354.

  • Panattoni, A,. Luvisi, A., Triolo, E. (2013) Elimination of viruses in plants: Twenty years of progress. Span. J. Agric. Res., 11 (1), 173–188.

  • Paunovic, S., Ruzic, D., Vujovic, T., Milenkovic, S., Jevremovic, D. (2007). In vitro production of Plum pox virus-free plums by chemotherapy with ribavirin. J. Biotechnol. Biotechnol. Eq., 21 (4), 417–421.

  • Permesur, Y., Saumtally, A. (2001). Elimination of sugarcane yellow leaf virus and sugarcane bacilliform virus by tissue culture. (Mauritius): Food and Agricultural Research Council., 127–133.

  • Pūpola, N., Lepse, L., Kāle, A., Moročko-Bičevska, I. (2009). Occurrence of RBDV in Latvia and virus elimination in vitro by chemotherapy. Sodininkystė ir Daržininkystė, 28 (3), 165–172.

  • Pūpola, N., Moročko-Bičevska, I., Kāle, A., Zeltinš A. (2011). Occurrence and diversity of pome fruit viruses in apple and pear orchards in Latvia. J. Phytopathol., 159, 597–605.

  • Sánchez-Navarro, J.A., Aparicio, F., Herranz, M. C., Minafra, A., Myrta, A., Pallįs, V. (2005). Simultaneous detection and identification of eight stone fruit trees viruses by one-step RT-PCR. Eur. J. Plant Pathol., 111, 77–84.

  • Saunier, R. (1972). Incidence d’un virus du type ringspot sur la comportment de deux cultivars du pźcher. La Pomologie Francaise, 14, 175–185.

  • Sidwell, R. W., Huffman, J. H., Share, G. P., Allen, L. B., Witkowski, J. T., Robins, R. K. (1972). Broad spectrum antiviral activity of virazole 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177, 705–706.

  • Singh, B. (2015). Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato. J. Crop Sci. Biotechnol., 18 (5), 341–348.

  • Smith, I. M., Dunez, J., Phillips, D. H., Lelliott R. A., Archer, S. A. (1988). European Handbook of Plant Deseases. Wiley-Blackwell. 598 pp.

  • Tiwari, J. K., Chandel, P., Gupta, S., Gopal, J., Singh, B. P., Bhardwaj, V. (2013). Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. J. Physiol. Mol. Biol. Plants, 19 (4), 587–595.

  • Ulrich, G., Mueller, L., LaReesa Wolfenbarger, L. (1999). AFLP genotyping and fingerprinting. TREE, 14 (10), 389–394.

  • Ulubas, C., Erunc, F. (2004). Apple chlorotic leaf spot virus (ACLSV) status in Turkey and sensitive detection using advanced techniques. Turk. J. Agric. For., 29 (2005), 251–257.

  • Verma, N., Ram, R., Zaidi, A. A. (2005). In vitro production of Prunus necrotic ringspot virus-free begonias through chemo-and thermotherapy. Sci. Hortic., 103, 239–247.

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeaum, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res., 23, 4407–4414.

  • Wen, X. P., Deng, X. X. (2005). Micropropagation of chestnut rose (Rosa roxburghii Tratt) and assessment of genetic stability in in vitro plants using RAPD and AFLP markers. J. Hort. Sci. Biotechnol., 80 (1), 54–60.

  • Whitfield, A. E., Falk, B. W., Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. J. Virol., 479–480, 278–289.

  • Xia, Y., Fan, Z., Yao, J., Liao, Q., Li, W., Qua, F., Peng, L. (2006). Discovery of bitriazolyl compounds as novel antiviral candidates for combating the Tobacco mosaic virus. J. Bioorg. Med. Chem. Lett., 16, 2693–2698.

  • Zhang, Z. H., Xiao, M., Yang, H. Y., Li, H., Gao, X. Y., Du, G. D. (2006). Evaluation and comparison on methods of virus elimination from the strawberry plants. J. Fruit Sci., 23, 720–723.

  • Zhao, W. G., Wang, J. G., Li, Z. M., Yang, Z. (2006). Synthesis and antiviral activity against Tobacco mosaic virus and 3DQSAR of α-substituted-1,2,3-thiadiazoleacetamides. J. Bioorg. Med. Chem. Lett., 16, 6107–6111.

  • Zucchi, M. I., Arizono, H., Morais, V. A., Fungaro, M. H. P., Vieira, M. L. C. (2002). Genetic instability of sugarcane plants derived from meristem cultures. J. Genet. Mol. Biol., 25 (1), 91–95.


Zeitschrift + Hefte