Influence of Antibiotic-Impregnated Biomaterials on Inflammatory Cytokines

Ingus Skadiņš 1 , Juta Kroiča 1 , Ilze Salma 2 , Aigars Reinis 1 , Marina Sokolova 3 , and Dagnija Rostoka 1
  • 1 Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007, Rīga, Latvia
  • 2 Department of Oral and Maxillofacial Surgery, Rīga Stradiņš University, LV-1007, Rīga, Latvia
  • 3 Faculty of Material Science and Applied Chemistry, Rīga Technical University, LV-1048, Rīga, Latvia


Local antibiotic therapy has several advantages over systemic antibiotic treatment. Using antibiotics in local biomaterial systems can reduce the number of microorganisms that can adhere to implanted biomaterials. In this in vitro study, antibacterial properties of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers were examined. The antibacterial efficiency of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa was studied by evaluating the expression of inflammatory cytokines (Interleukin-10 (IL-10), -defensin-2 and tumour necrosis factor alpha (TNF- )) in tissue surrounding implanted biomaterials in vivo. The results of this study demonstrated that hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers had a prolonged antibacterial effect in comparison to biomaterials without biodegradable polymers. Surrounding tissue displayed higher levels of inflammatory cytokines when implanted biomaterials had not been previously impregnated with antibiotics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antoci, V. Jr., Adams, C. S., Parvizi, J., Davidson, H. M., Composto, R. J., Freeman, T. A., Wickstrom, E., Ducheyne, P., Jungkind, D., Shapiro, I. M.,, Hickok, N. J. (2008). The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 29, 4684–4690.

  • Aybar, Y., Ozaras, R., Besirli, K., Engin, E., Karabulut, E., Salihoglu, T., Mete, B., Tabak, F., Mert, A., Tahan, G., Yilmaz, M. H., Ozturk, R. (2012). Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int. J. Antimicrob. Agents, 39, 338–342.

  • Bottner, F., Wegner, A., Winkelmann, W., Becker, K., Erren, M., Götze, C. (2007). Interleukin-6, procalcitonin and TNF-alpha: Markers of peri-prosthetic infection following total joint replacement. J. Bone Joint Surg. Br., 89, 94–99.

  • Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510–514.

  • Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa bioilms. Microbes Infect., 5 (13), 1213–1219.

  • Duarte, P. M., de Mendonça, A. C., Máximo, M. B., Santos, V. R., Bastos, M. F., Nociti Júnior, F. H. (2009). Differential cytokine expressions affect the severity of peri-implant disease. Clin. Oral Implants Res., 20, 514–520.

  • Gretzer, C., Emanuelsson, L., Liljensten, E., Thomsen, P. (2006). The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J. Biomater. Sci. Polym. Ed., 17 (6), 669–687.

  • Gristina, A. G., (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science, 237 (4822), 1588–1595.

  • Gollwitzer, H., Dombrowski, Y., Prodinger, P. M., Peric, M., Summer, B., Hapfelmeier, A., Saldamli, B., Pankow, F., von Eisenhart-Rothe, R., Imhoff, A. B., Schauber, J., Thomas, P., Burgkart, R., Banke, I. J. (2013). Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J. Bone Joint Surg., 95, 644–651.

  • Guillaume, O., Garric, X., Lavigne, J. P., Van Den Berghe, H., Coudane, J. (2012). Multilayer, degradable coating as a carrier for the sustained release of antibiotics: Preparation and antimicrobial efficacy in vitro. J. Control Release, 162 (3), 492–501.

  • Gul, M., Yasim, A., Aral, M., (2012). The levels of cytokines in rats following the use of prophylactic agents in vascular graft infection. Bratisl. Lek. Listy, 111 (6), 316–320.

  • Guo, Y. J., Long, T., Chen, W., Ning, C., Zhu, Z. A., Guo, Y. P. (2013). Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater. Sci. Eng. C Mater. Biol. Appl., 33 (7), 3583–3591.

  • Harder, J., Bartels, J., Christophers, E., Schroder, J. M. (2001). Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 276, 5707–5713.

  • Hanssen, A. D. (2005). Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin. Orthop. Relat. Res., 437, 91–96Z.

  • Hodgson, S. D., Greco-Stewart, V., Jimenez, C. S., Sifri, C. D., Brassinga, A. K. C., Ramirez-Arcos, S. (2014). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion, 54 (2), 461–470.

  • Hughes, S. P., Anderson, F. M. (1999). Infection in the operating room. J. Bone Joint Surg. Br., 81, 754–755

  • Kroica, J., Skadins, I., Salma, I., Reinis, A., Sokolova, M., Rostoka D., Berza N. (2016). Antibacterial efficiency of hydroxyapatite biomaterials with biodegradable polylactic acid and polycaprolactone polymers saturated with antibiotics. Proc. Latvian Acad. Sci., Section B, 70 (4), 220–226.

  • Lai, Y., Cogen, A. L., Radek, K. A., Park, H. J., Macleod, D. T., Leichtle, A., Ryan, A. F., Di Nardo, A., Gallo, R. L. (2010). Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol.,130 (9), 2211–2221.

  • Li, Z., Kong, W., Li, X., Xu, C., He, Y., Gao, J., Ma, Z., Wang, X., Zhang, Y., Xing, F., Li, M., Liu, Y. (2011). Antibiotic-containing biodegradable bead clusters with porous PLGA coating as controllable drug-releasing bone fillers. J. Biomater. Sci. Polym. Ed., 22 (13), 1713–1731.

  • Locs, J., Zalite, V., Berzina-Cimdina, L., Sokolova, M. (2013). Ammonium hydrogen carbonate provided viscous slurry foaming — a novel technology for the preparation of porous ceramics. J. Eur. Ceram. Soc., 33, 3437–3443.

  • Lyndon, B. J., Birbilis, B. N., (2014). Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J. Control Release, 179, 63–75.

  • McCann, M. T., Gilmore, B. F., Gorman, S. P. (2008). Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. JPP, 60, 1551–1571.

  • Moore, K. W., de Waal Malefyt, R., Coffman, R. L., O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19, 683–765.

  • Rousset, F., Garcia, E., Defrance, T., Péronne, C., Vezzio, N., Hsu, D. H., Kastelein, R., Moore, K. W., Banchereau, J. (1992). Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci., 89 (5), 1890–1893.

  • Sawamura, D., Goto, M., Shibaki, A., Akiyama, M., McMillan, J.R., Abiko, Y., Shimizu, H. (2005). Beta defensin-3 engineered epidermis shows highly protective effect for bacterial infection. Gene Ther.,12, 857–861.

  • Schutte, R. J., Xie, L., Klitzman, B., Reichert, W. M., (2009). In vivo cytokine-associated responses to biomaterials. Biomaterials,30 (2), 160–168.

  • Shindo, S., Ogata K., Kubota, K., Kojima, A., Kobayashi, M., Tada, Y., Okuyama, K., (2003). Vascular prosthetic implantation is associated with prolonged inflammation following aortic aneurysm surgery. J. Artif. Organs,6 (3), 173–178.

  • Skadins, I., Kroica, J., Salma, I., Reinis, A., Sokolova, M., Rostoka, D. (2017). The level of inflammatory cytokines and antimicrobial peptides after composite material implantation and contamination with bacterial culture. Key Eng. Mater., 721, 245–250.

  • Sokolova, M., Putniņš, A., Kreicbergs, I., Ločs, J. (2014). Scale-up of wet precipitation calcium phosphate synthesis. Key Eng. Mater., 604, 216–219.

  • Sun, X., Wang, D., Yu, H., Hu, L. (2010). Serial cytokine levels during wound healing in rabbit maxillary sinus mucosa. Acta Oto-Laryngologica, 130, 607–613.

  • Suska, F., Gretzer, C., Esposito, M., Emanuelsson, L., Wennerberg, A., Tengvall, P., Thomsen, P. (2005). In vivo cytokine secretion and NF-kappaB activation around titanium and copper implants. Biomaterials, 26 (5), 519–527.

  • Vassena, C., Fenu, S., Giuliani, F., Fantetti, L., Roncucci, G., Simonutti, G., Romanò, C. L., De Francesco, R., Drago, L. (2014). Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int. J. Antimicrob. Agents, 44 (1), 47–55.

  • Zhang, J. M., Jianxiong, A. (2007). Cytokines, inflammation and pain. Int. Anesthesiol. Clin., 45 (2), 27–37.


Journal + Issues