Biomechanical Properties of Human Dilated Ascending Aorta

Ivars Brečs 1 , 3 , Pēteris Stradiņš 1 , 3 , Mārtiņš Kalējs 1 , 2 , Uldis Strazdiņš 1 , Iveta Ozolanta 2  und Vladimir Kasyanov 2
  • 1 Department of Cardiac Surgery, LV-1002, Rīga, Latvia
  • 2 Laboratory of Biomechanics, LV-1067, Rīga, Latvia
  • 3 Rīga Stradiņš University, LV-1007, Rīga, Latvia


Aneurysms of ascending aorta are dilatation of the first part of the human aorta. They commonly show no clinical symptoms. This condition increases the risk of aorta dissection, which is a life-threatening condition. In this study we attempted to elucidate the changes in the biomechanical properties that occur in the dilated human ascending aorta. Fourteen specimens of ascending aorta wall were mechanically tested under a uniaxial tensile test. Two specimens from each ascending aorta anterior region were cut in longitudinal and circumferential directions. The samples were stretched until rupture of the sample occurred. The obtained experimental data were processed to determine maximal stress, maximal strain and the tangential modulus of elasticity in the linear part of the stress-strain curve. The obtained results showed a remarkable anisotropy of the ascending aorta tissue. We found higher strength of the tissue in the circumferential direction than in the longitudinal direction. There were no statistically significant differences between the strains of the samples. Tangential modulus of elasticity of the aortic samples in the longitudinal direction was significantly lower than the elastic modulus of the samples in the circumferential direction. The tissue in the circumferential direction is stronger and stiffer than in the longitudinal direction.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • Barber, J. E., Kasper, F. K., Ratliff, N. B., Cosgrove, D. M., Griffin, B. P., Vesely, I. (2001). Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg., 122, 955–962.

  • Carew, T. E., Vaishnav, R. N., Patel, D. J. (1968). Compressibility of the arterial wall. Circulation Res., 23, 61–68.

  • Chow, M. J., Zhang, Y. (2011). Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res., 171, 434–442.

  • Davies, R. R., Goldstein, L. J., Coady, M. A., Tittle, S. L., Rizzo, J. A., Kopf, G. S., Elefteriades, J. A. (2006). Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg., 81, 169–177.

  • Duprey, A., Khanafer, K., Schlicht, M., Avril, S., Williams, D., Berguer, R. (2010). In vitro characterization of physiological and maximum elastic modulus of ascending thoracic aortic aneurysm using uniaxial tensile testing. Eur. J. Vasc. Endovasc. Surg., 39, 700–707.

  • Elefteriades, J. A. (2002). Natural history of thoracic aortic aneurysms: Indications for surgery, and surgical versus nonsurgical risks. Ann. Thorac. Surg., 74, S1877–S1880.

  • Elefteriades, J. A., Farkas, E. A. (2010). Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Amer. Coll. Cardiol., 55, 841–857.

  • Erbel, R., Aboyans, V., Boileau, C., Bossone, E., Bartolomeo, R. D., Eggebrecht, H., Evangelista, A., Falk, V., Frank, H., Gaemperli, O., Grabenwöger, M., Haverich, A., Iung, B., Manolis, A. J., Meijboom, F., Nienaber, C. A., Roffi, M., Rousseau, H., Sechtem, U., Sirnes, P. A., Allmen, R. S., Vrints, C. J. (2014). 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart. J., 35 (41), 2873–2926.

  • Evangelista, A. (2010). Aneurysm of the ascending aorta. Heart, 96, 979–985.

  • Ferrara, A., Morganti, S., Totaro, P., Mazzola, A., Auricchio, F. (2016). Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests. J. Mech. Behav. Biomed. Mater., 53, 257–271.

  • Ferrara, A., Totaro, P., Morganti, S., Auricchio, F. (2018). Effects of clinico-pathological risk factors on in-vitro mechanical properties of human dilated ascending aorta. J. Mech. Behav. Biomed. Mater., 77, 1–11.

  • Januzzi, J. L., Isselbacher, E. M., Fattori, R., Cooper, J. V., Smith, D. E., Fang, J., Eagle, K. A., Mehta, R. H., Nienaber, C. A., Pape, L. A. (2004). Characterizing the young patient with aortic dissection: Results from the International Registry of Aortic Dissection (IRAD). J. Amer. Coll. Cardiol., 43 (4), 665–669.

  • Lavall, D., Schafers, H. J., Bohm, M., Laufs, U. (2012). Aneurysms of the ascending aorta. Dtsch. Arzteblatt Int., 109, 227–233.

  • Lawton, R. W. (1954). The thermoelastic behavior of isolated aortic strip of the dog. Circulation Res,. 2 (4), 344–353.

  • Mészáros, I., Mórocz, J., Szlávi, J., Schmidt, J., Tornóci, L., Nagy, L., Szép, L. (2000). Epidemiology and clinicopathology of aortic dissection. Chest, 117 (5), 1271–1278.

  • O’Leary, S. A., Doyle, B. J., McGloughlin, T. M. (2014). The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. Mat., 37, 165–173.

  • Okamoto, R. J., Xu, H., Kouchoukos, N. T., Moon, M. R., Sundt, T. M. (2003). The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta. J. Thorac. Cardiovasc. Surg., 126, 842–850.

  • Pape, L. A., Tsai, T. T., Isselbacher, E. M., Oh, J., O’Gara, P. T., Evangelista, A., Fattori, R., Meinhardt, G., Trimarchi, S., Bossone, E., Suzuki, T., Cooper, J. V., Froehlich, J. B., Nienaber, C. A., Eagle, K. A. (2007). International registry of acute aortic dissection (irad) aortic diameter 5.5 cm is not a good predictor of type a aortic dissection: Observations from the international registry of acute aortic dissection (irad). Circulation, 116, 1120–1127.

  • Pham, T., Martin, C., Elefteriades, J., Sun, W. (2013). Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater., 9, 7927–7936.

  • Stemper, B. D., Yoganandan, N., Stineman, M. R., Gennarelli, T. A., Baisden, J. L., Pintar, F. A. (2007). Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res., 139 (2), 236–242.


Zeitschrift + Hefte