HLA Class II-DRB,-DQA and –DQB Genotypes in Peripheral Blood Shows Shifts During the Course of Sepsis

Open access


Undeniably, sepsis is still a profoundly damaging and life-threatening condition for many individuals. With multiple changes in sepsis patients it is difficult to precisely classify an individual’s response in sepsis as proinflammatory or immunosuppressed. The aim of this study was to investigate genetically determined predisposition to developed sepsis by analysis of distribution of human leukocyte antigen (HLA) class II genes. Samples from patients with sepsis were collected at Pauls Stradiņš Clinical University Hospital, Latvia, in an intensive care unit between October 2016 and May 2017. The study group included 62 patients with sepsis, who were genotyped for HLA-DR; DQ using real time polymerase chain reaction – sequence specific primer (RT PCR-SSP). As a control group, data of 100 individuals were taken from the genetic bank of RSU Joint Laboratory of Clinical Immunology and Immunogenetics. The summarised results showed that the frequency of alleles DRB1*04:01 (OR = 5.54; 95% CI = 1.88–16.29); DRB1*07:01 (OR = 19.03; 95% CI = 2/37–152.82); DQA1*05:01 (OR = 14.17; 95% CI = 5.67–35.4); and DQB1*02:01 (OR = 50.00; 95% CI = 2.90–861.81) were significantly increased in patients with sepsis compared to the control group patients. The frequency of DRB1*16:01 (OR = 0.17, 95% CI = 0.04–0.59); DRB1*17:01 (OR = 0.04; 95% CI = 0.00–0.69); DQA1*01:01 (OR = 0.04; 95% CI = 0.00–0.31); DQA1*01:02 (OR = 0.03; 95% CI = 0.00–0.23); DQB1*02:02 (OR = 0.12; 95% CI = 0.03–0.42) alleles was lower in sepsis patients than in control subjects. The most frequent HLA-DRB1/DQA1/DQB1 haplotypes that was significantly increased in patients with sepsis were: DRB1*01:01/DQA1*05:01/DQB1*03:01 (OR = 12.6; 95% CI = 1.51–105.0; p < 0.003). Sepsis patients with pneumonia and alleles and DRB1 04:01; 07:01, DQB1 02:01 had the highest mortality rate. Undoubtedly, our preliminary data showed that development of sepsis can be associated with alleles and haplotypes of HLA class II genes. For more precise conclusion the research should be continued to include a larger patient group.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Angus D. C. van der Poll T. (2013). Severe sepsis and septic shock. New Engl. J. Med. 369 840–851.

  • Angus D. C. (2010). The lingering consequences of sepsis: A hidden public health disaster? JAMA 304 (16) 1833–1834.

  • Annane D. Bellissant E. Cavaillon J. M. (2005). Septic shock. Lancet36 63–78.

  • Anonymous (2018a). Nomenclature for factors of the HLA system. Available at: http://hla.alleles.org/nomenclature/index.html (accessed 07.01.2019).

  • Anonymous (2016). QIAamp DNA Mini and Blood Mini Handbook – 372 EN. Avalaible at: http://www.qiagen.com/ (accessed 09.01.2019).

  • Anonymous (2018b). Handbook – HLA -DRB1; DQA1; DQB1 kits EN. Avalaible at: http://www.dna-technology.ru/ (accessed 09.01.2019).

  • Blackwell J. M. Jamieson S. E. Burgner D. (2009). HLA and infectious diseases. Clin. Microbiol. Rev. 22 370–385.

  • Burgner D. Jamieson S. E. Blackwell J. M. (2006). Genetic susceptibility to infectious diseases: Big is beautiful but will bigger be even better? Lancet Infect Dis. 6 (10) 653–663.

  • Burton P. R. Tobin M. D. Hopper J. L. (2005). Key concepts in genetic epidemiology. Lancet 366 941–951.

  • Cajander S. Tina E. Bäckman A. Magnuson A. Strålin K. Söderquist B. Källman J. (2016). Quantitative real-time polymerase chain reaction measurement of HLA-DRA gene expression in whole blood is highly reproducible and shows changes that reflect dynamic shifts in monocyte surface HLA-DR expression during the course of sepsis. PLoS One11 (5) e0154690.

  • Cajander S. Bäckman A. Tina E. Stralin K. Bo Soderquist Kallman J. (2013). Preliminary results in quantitation of HLA-DRA by real-time PCR: A promising approach to identify immunosuppression in sepsis. Crit. Care 17 (5) R223.

  • Cazalis M. A. Friggeri A. Cavé L. Demaret J. Barbalat V. Cerrato E. Lepape A. Pachot A. Monneret G. Venet F. (2013). Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. Crit. Care 17 (6) R287.

  • Cazalis M. A. Lepape A. Venet F. Frager F. Mougin B. Vallin H. Paye M. Pachot A. Monneret G. (2014). Early and dynamic changes in gene expression in septic shock patients: A genome-wide approach. Intensive Care Med. Exp.2 (1) 20.

  • Choi N. M. Majumder P. Boss J. M. (2011). Regulation of major histocompatibility complex class II genes. Curr. Opin. Immunol.23 (1) 81–87.

  • Eglite J. Hagina E. Pavare J. Grope I. Gardovska D. Sochnevs A. (2010). Polymorphisms of HLA-DRB1* locus and the associations with HMGB1 protein in children with SIRS and sepsis. RSU Research Articles in Medicine & Pharmacy. Rīga Stradiņš University Rīga pp. 14–18.

  • Fisher C. J. Jr. Agosti J. M. Opal S. M. Lowry S. F. Balk R. A. Sadoff J. C. Abraham E. Schein R. M. Benjamin E. (1996). Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. New Engl. J. Med.334 (26) 1697–1702.

  • Hanna S. Etzioni A. (2014). MHC class I and II deficiencies. J. Allergy Clin. Immunol. 134 269–275.

  • Horton R. Gibson R. Coggill P. Miretti M. Allcock R. J. Almeida J. Forbes S. Gilbert J. G. Halls K. Harrow J. L. Hart E. Howe K. Jackson D. K. Palmer S. Roberts A. N. Sims S. Stewart C. A. Traherne J. A. Trevanion S. Wilming L. Rogers J. de Jong P. J. Elliott J. F. Sawcer S. Todd J. A. Trowsdale J. Beck S. (2008). Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project. Immunogenetics 60 (1) 1–18.

  • Hotchkiss R. S. Karl I. E. (2003). The pathophysiology and treatment of sepsis. New Engl. J. Med. 17 138–150.

  • Jabandziev P. Smerek M. Michalek J. Fedora M. Kosinova L. Hubacek J. A. Michalek J. (2014). Multiple gene-to-gene interactions in children with sepsis: A combination of five gene variants predicts outcome of life-threatening sepsis. Crit. Care. 18 (1) R1.

  • Kumpf O. Schumann R. R. (2008). Genetic influence on bloodstream infections and Sepsis. Int. J. Antimicr. Agents 32 S44–S50.

  • Kuniholm M. H. Xie X. Anastos K. Xue X. Reimers L. French A. L. Gange S. J. Kassaye S. G. Kovacs A. Wang. T. Aouizerat B. E. Strickler H. D. (2016). Human leucocyte antigen class I and II imputation in a multiracial population. Int. J. Immunogenet. 43 (6) 369–375.

  • Landelle C. Lepape A. Voirin N. Tognet E. Venet F. Bohé J. Vanhems P. Monneret G. (2010). Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Int. Care Med. 36 (11) 1859–1866.

  • Leentjens J. Kox M. van der Hoeven J.G. Netea M.G. Pickkers P. (2013). Immunotherapy for the adjunctive treatment of sepsis: From immunosuppression to immunostimulation. Time for a paradigm change? Amer. J. Respir. Crit. Care Med. 187 (12) 1287–1293.

  • Levy M. M. Dellinger R. P. Townsend S. R. Linde-Zwirble W. T. Marshall J. C. Bion J. Schorr C. Artigas A. Ramsay G. Beale R. Parker M. M. Gerlach H. Reinhart K. Silva E. Harvey M. Regan S. Angus D. C. (2010). The Surviving Sepsis Campaign: Results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 36 (2) 222–231.

  • Mato A. R. Fuchs B. D. Heitjan D. F. Mick R. Halpern S. D. Shah P. D. Jacobs S. Olson E. Schuster S. J. Ujjani C. Chong E. A. Loren A. W. Luger S. M. (2009). Utility of the systemic inflammatory response syndrome (SIRS) criteria in predicting the onset of septic shock in hospitalized patients with hematologic malignancies. Cancer Biol. Ther. 8 (12) 1095–1100.

  • Michalek J. Svetlikova P. Fedora M. Klimovic M. Klapacova L. Bartosova D. Hrstkova H. Hubacek J. A. (2007). Interleukin-6 gene variants and the risk of sepsis development in children. Human Immunol. 68 (9) 756–760.

  • Monneret G. Venet F. (2015). Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytometry B Clin. Cytom. 90 (4) 376–386.

  • Monneret G. Venet F. Pachot A. Lepape A. (2008). Monitoring immune dysfunctions in the septic patient: A new skin for the old ceremony. Mol. Med.17 64–78.

  • Hutchins N. A. Unsinger J. Hotchkiss R. S. Ayala A. (2014). The new normal: Immuno-modulatory agents against sepsis immune suppression. Trends Mol. Med. 20 (4) 224–233.

  • Otto G. P. Sossdorf M. Claus R. A. Rödel J. Menge K. Reinhart K. Bauer M. Riedemann N. C. (2011). The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care.15 (4) R183.

  • Pachot A. Monneret G. Brion A. Venet F. Bohé J. Bienvenu J. Mougin B. Lepape A. (2005). Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients. Crit. Care Med. 33 (1) 31–38.

  • Payen D. Monneret G. Hotchkiss R. (2013). Immunotherapy—a potential new way forward in the treatment of sepsis. Crit. Care 17 118.

  • Shimokawa P. T. Targa L. S. Yamamoto L. Rodrigues J. C. Kanunfre K. A. Okay T. S. (2016). HLA-DQA1/B1 alleles as putative susceptibility markers in congenital toxoplasmosis. Virulence7 (4) 456–464.

  • Watson R. S. Carcillo J. A. Linde-Zwirble W. T. Clermont G. Lidicker J. Angus D. C. (2003). The epidemiology of severe sepsis in children in the United States. Amer. J. Respir. Crit. Care Med.167 695–701.

Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2551 2551 2
PDF Downloads 173 173 6